Patents by Inventor Chung-Yi Yu

Chung-Yi Yu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9401434
    Abstract: The present disclosure relates to a structure and method for forming a flash memory cell with an improved erase speed and erase current. Si dots are used for charge trapping and an ONO sandwich structure is formed over the Si dots. Erase operation includes direct tunneling as well as FN tunneling which helps increase erase speed without compensating data retention.
    Type: Grant
    Filed: September 18, 2014
    Date of Patent: July 26, 2016
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chih-Ming Chen, Tsu-Hui Su, Szu-Yu Wang, Chung-Yi Yu
  • Publication number: 20160204212
    Abstract: A quantum nano-tip (QNT) thin film, such as a silicon nano-tip (SiNT) thin film, for flash memory cells is provided to increase erase speed. The QNT thin film includes a first dielectric layer and a second dielectric layer arranged over the first dielectric layer. Further, the QNT thin film includes QNTs arranged over the first dielectric layer and extending into the second dielectric layer. A ratio of height to width of the QNTs is greater than 50 percent. A QNT based flash memory cell and a method for manufacture a SiNT based flash memory cell are also provided.
    Type: Application
    Filed: January 14, 2015
    Publication date: July 14, 2016
    Inventors: Tsu-Hui Su, Chih-Ming Chen, Chia-Shiung Tsai, Chung-Yi Yu, Szu-Yu Wang
  • Patent number: 9385136
    Abstract: Some embodiments of the present disclosure relate to a method that achieves a substantially uniform pattern of discrete storage elements within a memory cell. A copolymer solution having first and second polymer species is spin-coated onto a surface of a substrate and subjected to self-assembly into a phase-separated material having a regular pattern of micro-domains of the second polymer species within a polymer matrix having the first polymer species. The second polymer species is then removed resulting with a pattern of holes within the polymer matrix. An etch is then performed through the holes utilizing the polymer matrix as a hard-mask to form a substantially identical pattern of holes in a dielectric layer disposed over a seed layer disposed over the substrate surface. Epitaxial deposition onto the seed layer then utilized to grow a substantially uniform pattern of discrete storage elements within the dielectric layer.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: July 5, 2016
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chih-Ming Chen, Tsung-Yu Chen, Cheng-Te Lee, Szu-Yu Wang, Chung-Yi Yu, Chia-Shiung Tsai, Xiaomeng Chen
  • Publication number: 20160190349
    Abstract: The present disclosure relates to a structure and method for reducing dangling bonds around quantum dots in a memory cell. In some embodiments, the structure has a semiconductor substrate having a tunnel dielectric layer disposed over it and a plurality of quantum dots disposed over the tunnel dielectric layer. A passivation layer is formed conformally over outer surfaces of the quantum dots and a top dielectric layer is disposed conformally around the passivation layer. The passivation layer can be formed prior to forming the top dielectric layer over the quantum dots or after forming the top dielectric layer. The passivation layer reduces the dangling bonds at an interface between the quantum dots and the top dielectric layer, thereby preventing trap sites that may hinder operations of the memory cell.
    Type: Application
    Filed: December 26, 2014
    Publication date: June 30, 2016
    Inventors: Chih-Ming Chen, Tsu-Hui Su, Szu-Yu Wang, Chung-Yi Yu, Chia-Shiung Tsai
  • Patent number: 9373689
    Abstract: A semiconductor structure includes a first III-V compound layer. A second III-V compound layer is disposed on the first III-V compound layer and is different from the first III-V compound layer in composition. A dielectric passivation layer is disposed on the second III-V compound layer. A source feature and a drain feature are disposed on the second III-V compound layer, and extend through the dielectric passivation layer. A gate electrode is disposed over the second III-V compound layer between the source feature and the drain feature. The gate electrode has an exterior surface. An oxygen containing region is embedded at least in the second III-V compound layer under the gate electrode. A gate dielectric layer has a first portion and a second portion. The first portion is under the gate electrode and on the oxygen containing region. The second portion is on a portion of the exterior surface of the gate electrode.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: June 21, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Han-Chin Chiu, Chi-Ming Chen, Chung-Yi Yu, Chia-Shiung Tsai
  • Patent number: 9368610
    Abstract: A semiconductor device includes a substrate, a first layer over the substrate, a second layer over the first layer, and a third layer over the second layer. The third layer has a first portion and a second portion. The first portion of the third layer is separated from the second portion of the third layer. The semiconductor device also includes a first blended region beneath the first portion of the third layer. The first blended region includes aluminum atoms drawn from the first layer into at least the second layer. The semiconductor device further includes a second blended region beneath the second portion of the third layer. The second blended region includes aluminum atoms drawn from the first layer into at least the second layer. The semiconductor device also includes a source contact and a drain contact.
    Type: Grant
    Filed: November 3, 2015
    Date of Patent: June 14, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chen-Hao Chiang, Po-Chun Liu, Chi-Ming Chen, Min-Chang Ching, Chung-Yi Yu, Chia-Shiung Tsai, Ru-Liang Lee
  • Publication number: 20160118577
    Abstract: Some embodiments of the present disclosure relate to a method that achieves a substantially uniform pattern of magnetic random access memory (MRAM) cells with a minimum dimension below the lower resolution limit of some optical lithography techniques. A copolymer solution comprising first and second polymer species is spin-coated over a heterostructure which resides over a surface of a substrate. The heterostructure comprises first and second ferromagnetic layers which are separated by an insulating layer. The copolymer solution is subjected to self-assembly into a phase-separated material comprising a pattern of micro-domains of the second polymer species within a polymer matrix comprising the first polymer species. The first polymer species is then removed, leaving a pattern of micro-domains of the second polymer species. A pattern of magnetic memory cells within the heterostructure is formed by etching through the heterostructure while utilizing the pattern of micro-domains as a hardmask.
    Type: Application
    Filed: January 8, 2016
    Publication date: April 28, 2016
    Inventors: Chih-Ming Chen, Chern-Yow Hsu, Szu-Yu Wang, Chung-Yi Yu, Chia-Shiung Tsai, Xiaomeng Chen
  • Publication number: 20160111520
    Abstract: A method of manufacturing a semiconductor device includes forming a barrier structure over a substrate. The method further includes forming a channel layer over the barrier structure. The method further includes depositing an active layer over the channel layer. The method further includes forming source/drain electrodes over the channel layer. The method further includes annealing the source/drain electrodes to form ohmic contacts in the active layer under the source/drain electrodes.
    Type: Application
    Filed: December 21, 2015
    Publication date: April 21, 2016
    Inventors: Po-Chun Liu, Chi-Ming Chen, Chen-Hao Chiang, Chung-Yi Yu, Chia-Shiung Tsai, Xiaomeng Chen
  • Publication number: 20160087106
    Abstract: The present disclosure relates to a structure and method for forming a flash memory cell with an improved erase speed and erase current. Si dots are used for charge trapping and an ONO sandwich structure is formed over the Si dots. Erase operation includes direct tunneling as well as FN tunneling which helps increase erase speed without compensating data retention.
    Type: Application
    Filed: September 18, 2014
    Publication date: March 24, 2016
    Inventors: Chih-Ming Chen, Tsu-Hui Su, Szu-Yu Wang, Chung-Yi Yu
  • Publication number: 20160071969
    Abstract: A semiconductor device includes a substrate, a first layer over the substrate, a second layer over the first layer, and a third layer over the second layer. The third layer has a first portion and a second portion. The first portion of the third layer is separated from the second portion of the third layer. The semiconductor device also includes a first blended region beneath the first portion of the third layer. The first blended region includes aluminum atoms drawn from the first layer into at least the second layer. The semiconductor device further includes a second blended region beneath the second portion of the third layer. The second blended region includes aluminum atoms drawn from the first layer into at least the second layer. The semiconductor device also includes a source contact and a drain contact.
    Type: Application
    Filed: November 3, 2015
    Publication date: March 10, 2016
    Inventors: Chen-Hao CHIANG, Po-Chun LIU, Chi-Ming CHEN, Min-Chang CHING, Chung-Yi YU, Chia-Shiung TSAI, Ru-Liang LEE
  • Patent number: 9281203
    Abstract: Some embodiments of the present disclosure relate to a method that achieves a substantially uniform pattern of discrete storage elements comprising a substantially equal size within a memory cell. A copolymer solution comprising first and second polymer species is spin-coated onto a surface of a substrate and subjected to self-assembly into a phase-separated material comprising a regular pattern of micro-domains of the second polymer species within a polymer matrix comprising the first polymer species. The first or second polymer species is then removed resulting with a pattern of micro-domains or the polymer matrix with a pattern of holes, which may be utilized as a hard-mask to form a substantially identical pattern of discrete storage elements through an etch, ion implant technique, or a combination thereof.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: March 8, 2016
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chih-Ming Chen, Cheng-Te Lee, Szu-Yu Wang, Chung-Yi Yu, Chia-Shiung Tsai, Xiaomeng Chen
  • Patent number: 9257636
    Abstract: Some embodiments of the present disclosure relate to a method that achieves a substantially uniform pattern of magnetic random access memory (MRAM) cells with a minimum dimension below the lower resolution limit of some optical lithography techniques. A copolymer solution comprising first and second polymer species is spin-coated over a heterostructure which resides over a surface of a substrate. The heterostructure comprises first and second ferromagnetic layers which are separated by an insulating layer. The copolymer solution is subjected to self-assembly into a phase-separated material comprising a pattern of micro-domains of the second polymer species within a polymer matrix comprising the first polymer species. The first polymer species is then removed, leaving a pattern of micro-domains of the second polymer species. A pattern of magnetic memory cells within the heterostructure is formed by etching through the heterostructure while utilizing the pattern of micro-domains as a hardmask.
    Type: Grant
    Filed: September 11, 2013
    Date of Patent: February 9, 2016
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chih-Ming Chen, Chern-Yow Hsu, Szu-Yu Wang, Chung-Yi Yu, Chia-Shiung Tsai, Xiaomeng Chen
  • Publication number: 20160035682
    Abstract: Wafer bowing induced by deep trench capacitors is ameliorated by structures formed on the reverse side of the wafer. The structures on the reverse side include tensile films. The films can be formed within trenches on the back side of the wafer, which enhances their effect. In some embodiments, the wafers are used to form 3D-IC devices. In some embodiments, the 3D-IC device includes a high voltage or high power circuit.
    Type: Application
    Filed: October 13, 2015
    Publication date: February 4, 2016
    Inventors: Chih-Ming Chen, Szu-Yu Wang, Chung-Yi Yu
  • Patent number: 9245991
    Abstract: A semiconductor device includes a substrate, a channel layer over the substrate, an active layer over the channel layer, and a barrier structure between the substrate and the channel layer. The active layer is configured to cause a two dimensional electron gas (2DEG) to be formed in the channel layer along an interface between the channel layer and the active layer. The barrier structure is configured to block diffusion of at least one of a material of the substrate or a dopant toward the channel layer.
    Type: Grant
    Filed: August 12, 2013
    Date of Patent: January 26, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Po-Chun Liu, Chi-Ming Chen, Chen-Hao Chiang, Chung-Yi Yu, Chia-Shiung Tsai, Xiaomeng Chen
  • Patent number: 9236464
    Abstract: A method of forming a high electron mobility transistor may include: forming a second III-V compound layer on a first III-V compound layer, the second III-V compound layer and the first III-V compound layer differing in composition; forming a p-type doped region in the first III-V compound layer; forming an n-type doped region in the second III-V compound layer, the n-type doped region overlying the p-type doped region; forming a source feature over the second III-V compound layer, the source feature overlying the n-type doped region; and forming a gate electrode over the second III-V compound layer, the gate electrode disposed laterally adjacent to the source feature.
    Type: Grant
    Filed: November 20, 2014
    Date of Patent: January 12, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hao Chiang, Chi-Ming Chen, Chung-Yi Yu, Po-Chun Liu, Han-Chin Chiu
  • Patent number: 9236465
    Abstract: A semiconductor structure includes a first III-V compound layer. A second III-V compound layer is disposed on the first III-V compound layer and is different from the first III-V compound layer in composition. A carrier channel is located between the first III-V compound layer and the second III-V compound layer. A source feature and a drain feature are disposed on the second III-V compound layer. A gate electrode is disposed over the second III-V compound layer between the source feature and the drain feature. A fluorine region is embedded in the second III-V compound layer under the gate electrode. A diffusion barrier layer is disposed on top of the second III-V compound layer. A gate dielectric layer is disposed over the second III-V compound layer. The gate dielectric layer has a fluorine segment on the fluorine region and under at least a portion of the gate electrode.
    Type: Grant
    Filed: October 10, 2014
    Date of Patent: January 12, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Po-Chun Liu, Chung-Yi Yu, Chi-Ming Chen
  • Patent number: 9233844
    Abstract: The present disclosure is directed to an integrated circuit and a method for the fabrication of the integrated circuit. The integrated circuit includes a lattice matching structure. The lattice matching structure can include a first buffer region, a second buffer region and a superlattice structure formed from AlxGa1-xN/AlyGa1-yN layer pairs.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: January 12, 2016
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chi-Ming Chen, Po-Chun Liu, Chung-Yi Yu
  • Patent number: 9224847
    Abstract: A High Electron Mobility Transistor (HEMT) includes a first III-V compound layer having a first band gap, and a second III-V compound layer having a second band gap over the first III-V compound layer. The second band gap is greater than the first band gap. A crystalline interfacial layer is overlying and in contact with the second III-V compound layer. A gate dielectric is over the crystalline interfacial layer. A gate electrode is over the gate dielectric. A source region and a drain region are over the second III-V compound layer, and are on opposite sides of the gate electrode.
    Type: Grant
    Filed: July 11, 2014
    Date of Patent: December 29, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Han-Chin Chiu, Po-Chun Liu, Chi-Ming Chen, Chung-Yi Yu, King-Yuen Wong
  • Publication number: 20150371994
    Abstract: Some embodiments of the present disclosure relate to a method for forming flash memory. In this method, a first tunnel oxide is formed over a semiconductor substrate. A self-assembled monolayer (SAM) is then formed on the first tunnel oxide. The SAM includes spherical or spherical-like crystalline silicon dots having respective diameters which are less than approximately 30 nm. A second tunnel oxide is then formed over the SAM.
    Type: Application
    Filed: June 19, 2014
    Publication date: December 24, 2015
    Inventors: Tsu-Hui Su, Chih-Ming Chen, Szu-Yu Wang, Chung-Yi Yu, Chia-Shiung Tsai
  • Patent number: 9209190
    Abstract: The present disclosure relates to a method of forming a capacitor structure, including depositing a plurality of first polysilicon (POLY) layers of uniform thickness separated by a plurality of oxide/nitride/oxide (ONO) layers over a bottom and sidewalls of a recess and substrate surface. A second POLY layer is deposited over the plurality of first POLY layers, is separated by an ONO layer, and fills a remainder of the recess. Portions of the second POLY layer and the second ONO layer are removed with a first chemical-mechanical polish (CMP). A portion of each of the plurality of first POLY layers and the first ONO layers on the surface which are not within a doped region of the capacitor structure are removed with a first pattern and etch process such that a top surface of each of the plurality of first POLY layers is exposed for contact formation.
    Type: Grant
    Filed: June 25, 2013
    Date of Patent: December 8, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chih-Ming Chen, Szu-Yu Wang, Chung-Yi Yu