Patents by Inventor Dale W. Collins

Dale W. Collins has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040011653
    Abstract: The invention includes methods of electrochemically treating semiconductor substrates. The invention includes a method of electroplating a substance. A substrate having defined first and second regions is provided. The first and second regions can be defined by a single mask, and accordingly can be considered to be self-aligned relative to one another. A first electrically conductive material is formed over the first region, and a second electrically conductive material is formed over the second region. The first and second electrically conductive materials are exposed to an electrolytic solution while providing electrical current to the first and second electrically conductive materials. A desired substance is selectively electroplated onto the first electrically conductive material during the exposing of the first and second electrically conductive materials to the electrolytic solution. The invention also includes methods of forming capacitor constructions.
    Type: Application
    Filed: July 18, 2002
    Publication date: January 22, 2004
    Inventors: Dale W. Collins, Richard H. Lane, Rita J. Klein
  • Publication number: 20030183528
    Abstract: A method of electroplating metal onto a low conductivity layer combines a potential or current reversal waveform with variation in the amplitude and duration of the applied potential or current pulse. The method includes, over time, varying the duration of the pulse and continuously decreasing the amplitude of both the cathodic and anodic portions of the waveform across the surface of the low conductivity layer as the deposition zone moves from the center of the surface of the low conductivity layer to the outside edge. By virtue of the ability to vary the amplitude and duration of the pulse, the method facilitates the filling of structures in the center of the low conductivity layer without overdepositing on the outside edge, thus ensuring a controlled deposition of material across the surface of the low conductivity layer.
    Type: Application
    Filed: March 26, 2003
    Publication date: October 2, 2003
    Inventor: Dale W. Collins
  • Publication number: 20030183527
    Abstract: A method of electroplating metal onto a low conductivity layer combines a potential or current reversal waveform with variation in the amplitude and duration of the applied potential or current pulse. The method includes, over time, varying the duration of the pulse and continuously decreasing the amplitude of both the cathodic and anodic portions of the waveform across the surface of the low conductivity layer as the deposition zone moves from the center of the surface of the low conductivity layer to the outside edge. By virtue of the ability to vary the amplitude and duration of the pulse, the method facilitates the filling of structures in the center of the low conductivity layer without overdepositing on the outside edge, thus ensuring a controlled deposition of material across the surface of the low conductivity layer.
    Type: Application
    Filed: March 26, 2003
    Publication date: October 2, 2003
    Inventor: Dale W. Collins
  • Publication number: 20030038036
    Abstract: A method of electroplating metal onto a low conductivity layer combines a potential or current reversal waveform with variation in the amplitude and duration of the applied potential or current pulse. The method includes, over time, varying the duration of the pulse and continuously decreasing the amplitude of both the cathodic and anodic portions of the waveform across the surface of the low conductivity layer as the deposition zone moves from the center of the surface of the low conductivity layer to the outside edge. By virtue of the ability to vary the amplitude and duration of the pulse, the method facilitates the filling of structures in the center of the low conductivity layer without overdepositing on the outside edge, thus ensuring a controlled deposition of material across the surface of the low conductivity layer.
    Type: Application
    Filed: August 27, 2001
    Publication date: February 27, 2003
    Inventor: Dale W. Collins