Patents by Inventor Daniel C. Edelstein

Daniel C. Edelstein has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180082956
    Abstract: A method for constructing an advance conductor structure is described. A pattern is provided in a dielectric layer in which a set of features are patterned for a set of metal conductor structures. An adhesion promoting layer is created disposed over the patterned dielectric. A metal layer is deposited to fill a first portion of the set of features disposed the adhesion promoting layer. A ruthenium layer is deposited disposed over the metal layer. Using a physical vapor deposition process, a cobalt layer is deposited disposed over the ruthenium layer. A thermal anneal reflows the cobalt layer to fill a second portion of the set of features.
    Type: Application
    Filed: November 15, 2017
    Publication date: March 22, 2018
    Inventors: Daniel C Edelstein, Chih-Chao Yang
  • Patent number: 9911690
    Abstract: A structure having fully aligned via connecting metal lines on different Mx levels. The structure may include a first metal line and a second metal line in a first ILD, a cap covering the first ILD, the second metal line and a portion of the first metal line, a second ILD on the cap, and a via that electrically connects the first metal line to a third metal line, wherein the third metal line is above the first metal line and runs perpendicular to the first metal line, the via is fully aligned to the first metal line and the third metal line, and the via electrically connects the first metal line to the third metal line.
    Type: Grant
    Filed: February 16, 2016
    Date of Patent: March 6, 2018
    Assignee: International Business Machines Corporation
    Inventors: Daniel C. Edelstein, Nicholas C. Fuller, Elbert E. Huang, Satyanarayana V. Nitta, David L. Rath
  • Publication number: 20180061703
    Abstract: An integrated circuit device has a substrate including a dielectric layer patterned with a pattern which includes a set of features in the dielectric for a set of metal conductor structures. An adhesion promoting layer is disposed on the set of features in the patterned dielectric. A ruthenium layer is disposed on the adhesion promoting layer. A cobalt layer is disposed on the ruthenium layer filling a first portion of the set of features. The cobalt layer has a u-shaped cross section having a thicker bottom layer than side layers. The cobalt layer is formed using a physical vapor deposition process. A metal layer is disposed on the cobalt layer filling a second, remainder portion of the set of features.
    Type: Application
    Filed: November 7, 2017
    Publication date: March 1, 2018
    Inventors: Daniel C. Edelstein, Chih-Chao Yang
  • Publication number: 20180061768
    Abstract: A method for fabricating an advanced metal conductor structure is described. A pattern in a dielectric layer is provided. The pattern includes a set of features in the dielectric for a set of metal conductor structures. An adhesion promoting layer is created over the patterned dielectric. A ruthenium layer is deposited over the adhesion promoting layer. Using a physical vapor deposition process, a cobalt layer is deposited over the ruthenium layer. A thermal anneal is performed which reflows the cobalt layer to fill the set of features to form a set of metal conductor structures.
    Type: Application
    Filed: November 7, 2017
    Publication date: March 1, 2018
    Inventors: Daniel C. Edelstein, Chih-Chao Yang
  • Patent number: 9905667
    Abstract: A bipolar junction transistor comprises a semiconductor layer disposed on an insulating material, at least a portion of the semiconductor layer forming a base region. The bipolar junction transistor further comprises a transistor emitter laterally disposed on a first side of the base region, where in the transistor emitter is a first doping type and has a first width, and wherein the first width is a lithographic feature size. The bipolar junction transistor further comprises a transistor collector laterally disposed on a second side of the base region, wherein the transistor collector is the first doping type and the first width. The bipolar junction transistor further comprises a central base contact laterally disposed on the base region between the transistor emitter and the transistor collector, wherein the central base contact is a second doping type and has a second width, and wherein the second width is a sub-lithographic feature size.
    Type: Grant
    Filed: February 17, 2017
    Date of Patent: February 27, 2018
    Assignee: International Business Machines Corporation
    Inventors: Fabio Carta, Daniel C. Edelstein, Stephen M. Gates, Bahman Hekmatshoartabari, Tak H. Ning
  • Publication number: 20180053725
    Abstract: A pattern is provided in a dielectric layer. The pattern includes a set of features in the dielectric for a set of metal conductor structures. The set of features have a first dimension. An adhesion promoting layer disposed over the patterned dielectric is deposited. A ruthenium layer disposed over the adhesion promoting layer is deposited. A cobalt layer is deposited over the ruthenium layer. A high temperature thermal anneal is performed which creates a ruthenium cobalt alloy layer to cover surfaces of the set of features. A metal layer is deposited disposed over the ruthenium cobalt alloy layer to form a set of metal conductor structures. In another aspect of the invention, a device is created using the method.
    Type: Application
    Filed: August 17, 2016
    Publication date: February 22, 2018
    Inventors: Daniel C. Edelstein, Chih-Chao Yang
  • Publication number: 20180053728
    Abstract: An advanced metal conductor structure is described. An integrated circuit device including a substrate with a patterned dielectric layer. The pattern includes a set of features in the dielectric for a set of metal conductor structures. An adhesion promoting layer disposed over the set of features in the patterned dielectric and a ruthenium layer is disposed over the adhesion promoting layer. A cobalt layer is disposed over the ruthenium layer filling the set of features, wherein the cobalt layer is formed using a physical vapor deposition process.
    Type: Application
    Filed: January 23, 2017
    Publication date: February 22, 2018
    Inventors: Daniel C. Edelstein, Chih-Chao Yang
  • Publication number: 20180053727
    Abstract: An integrated circuit device includes a substrate including a patterned dielectric layer. The pattern includes a set of features in the dielectric for a set of metal conductor structures. An adhesion promoting layer is disposed over the set of features in the patterned dielectric. A ruthenium cobalt alloy layer is disposed over the adhesion promoting layer. A metal layer is disposed over the ruthenium cobalt alloy layer filling the set of features.
    Type: Application
    Filed: February 3, 2017
    Publication date: February 22, 2018
    Inventors: Daniel C Edelstein, Chih-Chao Yang
  • Publication number: 20180053726
    Abstract: An advanced metal conductor structure is described. An integrated circuit device including a substrate having a dielectric layer is patterned. The pattern includes a set of features in the dielectric for a set of metal conductor structures. An adhesion promoting layer is disposed over the set of features in the patterned dielectric. A nitridized ruthenium layer is disposed over the adhesion promoting layer. A cobalt layer disposed over the nitridized ruthenium layer filling the set of features, wherein the cobalt layer is formed using a physical vapor deposition process.
    Type: Application
    Filed: January 23, 2017
    Publication date: February 22, 2018
    Inventors: Daniel C. Edelstein, Chih-Chao Yang
  • Publication number: 20180053724
    Abstract: An advanced metal conductor structure and a method for constructing the structure are described. A pattern is provided in a dielectric layer. The pattern includes a set of features in the dielectric for a set of metal conductor structures. An adhesion promoting layer is created over the patterned dielectric. A ruthenium layer disposed over the adhesion promoting layer is deposited. A nitridation process is performed on the ruthenium layer to produce a nitridized ruthenium layer. Using a physical vapor deposition process, a cobalt layer is deposited disposed over the nitridized ruthenium layer. A thermal anneal is performed which reflows the cobalt layer to fill the set of features to form a set of metal conductor structures. In another aspect of the invention, an integrated circuit device is formed using the method.
    Type: Application
    Filed: August 17, 2016
    Publication date: February 22, 2018
    Inventors: Daniel C. Edelstein, Chih-Chao Yang
  • Patent number: 9893012
    Abstract: A structure and method for fabricating an e-Fuse device in a semiconductor device is described. A method for fabricating an e-Fuse device includes providing a trench structure including an anode region, a cathode region and a fuse element which interconnects the anode and cathode regions in a dielectric material on a first surface of a substrate. The fuse element has a smaller cross section and a higher aspect ratio than the anode and cathode regions. An aspect ratio reducing layer is selectively formed in the anode and cathode regions of the trench while leaving the fuse element region of the trench substantially free of the aspect ratio reducing layer. The trench is filled with copper, both over the aspect ratio reducing layer in the anode and cathode regions and in the fuse element region. The copper is annealed to create a large grained copper structure in the anode and cathode regions and a fine grained copper structure in the fuse element. Another aspect of the invention is an e-Fuse device.
    Type: Grant
    Filed: March 28, 2016
    Date of Patent: February 13, 2018
    Assignee: International Business Machines Corporation
    Inventors: Daniel C Edelstein, Chih-Chao Yang
  • Publication number: 20180025989
    Abstract: An integrated circuit device includes a substrate including a dielectric layer patterned with a set of conductive line trenches, each conductive line trench having parallel vertical sidewalls and a horizontal bottom. A liner which is an alloy of a first metal and a selected element formed at interfaces of the metal layer and a surface of the dielectric and is created by an anneal and reflow process. The first metal having a first conductivity in a pure form. A second metal layer fills the set of conductive line trenches, the second metal having a second conductivity higher than the first conductivity.
    Type: Application
    Filed: February 21, 2017
    Publication date: January 25, 2018
    Inventors: Daniel C Edelstein, Chih-Chao Yang
  • Publication number: 20180025971
    Abstract: An integrated circuit device having a substrate including a dielectric layer is patterned with a set of conductive line trenches. Each conductive line trench of the conductive line pattern having parallel vertical sidewalls and a horizontal bottom. A metal fills the set of conductive line trenches, wherein the metal fill is created by an anneal and reflow process. A liner which is an alloy of the metal and a selected element formed at interfaces of the metal layer and a surface of the dielectric, created simultaneously with the metal fill by the anneal and reflow process.
    Type: Application
    Filed: February 21, 2017
    Publication date: January 25, 2018
    Inventors: Daniel C Edelstein, Chih-Chao Yang
  • Publication number: 20180025988
    Abstract: An advanced metal conductor structure and a method for constructing the structure are described. A method for fabricating an advanced metal conductor structure provides a conductive line pattern including a set of conductive line trenches in a dielectric layer. Each conductive line trench of the conductive line pattern has parallel vertical sidewalls and a horizontal bottom. A surface treatment of the dielectric layer is performed. The surface treatment produces an element enriched surface layer in which a concentration of a selected element in a surface portion of the parallel sidewalls and horizontal bottoms of the conductive line trenches is increased. A metal layer is deposited on the element enriched surface layer.
    Type: Application
    Filed: July 22, 2016
    Publication date: January 25, 2018
    Inventors: Daniel C. Edelstein, Chih-Chao Yang
  • Patent number: 9870993
    Abstract: An advanced metal conductor structure and a method for constructing the structure are described. A method for fabricating an advanced metal conductor structure provides a conductive line pattern including a set of conductive line trenches in a dielectric layer. Each conductive line trench of the conductive line pattern has parallel vertical sidewalls and a horizontal bottom. A surface treatment of the dielectric layer is performed. The surface treatment produces an element enriched surface layer in which a concentration of a selected element in a surface portion of the parallel sidewalls and horizontal bottoms of the conductive line trenches is increased. A metal layer is deposited on the element enriched surface layer.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: January 16, 2018
    Assignee: International Business Machines Corporation
    Inventors: Daniel C Edelstein, Chih-Chao Yang
  • Publication number: 20180006022
    Abstract: A first semiconductor structure including a first bonding oxide layer having a first metallic structure embedded therein and a second semiconductor structure including a second bonding oxide layer having second metallic structure embedded therein are provided. A high-k dielectric material is formed on a surface of the first metallic structure. A nitride surface treatment process is performed to provide a nitrided surface layer to each structure. The nitrided surface layer includes nitridized oxide regions located in an upper portion of the bonding oxide layers and either a nitridized high-k dielectric material located in at least an upper portion of the high k dielectric material or a nitridized metallic region located in an upper portion of the second metallic structure. The nitrogen within the nitridized metallic region is then selectively removed to restore the upper portion of the second metallic structure to its original composition. Bonding is then performed.
    Type: Application
    Filed: July 14, 2017
    Publication date: January 4, 2018
    Inventors: Daniel C. Edelstein, Chih-Chao Yang
  • Publication number: 20180005978
    Abstract: A first semiconductor structure including a first bonding oxide layer having a first metallic bonding structure embedded therein and a second semiconductor structure including a second bonding oxide layer having a second metallic bonding structure embedded therein are provided. A nitride surface treatment process is performed to provide a nitrided surface layer to each structure. Each nitrided surface layer includes nitridized oxide regions located in an upper portion of the bonding oxide layer and nitridized metallic regions located in an upper portion of the metallic bonding structures. The nitrogen within the nitridized metallic regions is then removed to restore the upper portion of the metallic bonding structures to its original composition. Bonding is performed to form a dielectric bonding interface between the nitridized oxide regions present in the first and second structures, and a metallic bonding interface between the first and second metallic bonding structures.
    Type: Application
    Filed: June 30, 2016
    Publication date: January 4, 2018
    Inventors: Daniel C. Edelstein, Chih-Chao Yang
  • Patent number: 9859433
    Abstract: An advanced metal conductor structure is described. An integrated circuit device including a substrate having a patterned dielectric layer. The pattern includes a set of features in the dielectric for a set of metal conductor structures. An adhesion promoting layer is disposed over the set of features in the patterned dielectric. A metal layer fills a first portion of the set of features and is disposed over the adhesion promoting layer. A ruthenium layer is disposed over the metal layer. A cobalt layer is disposed over the ruthenium layer fills a second portion of the set of features. The cobalt layer is formed using a physical vapor deposition process.
    Type: Grant
    Filed: January 23, 2017
    Date of Patent: January 2, 2018
    Assignee: International Business Machines Corporation
    Inventors: Daniel C Edelstein, Chih-Chao Yang
  • Patent number: 9859155
    Abstract: An advanced metal conductor structure is described. An integrated circuit device includes a substrate having a patterned dielectric layer. The pattern includes a set of features in the dielectric for a set of metal conductor structures. An adhesion promoting layer is disposed over the set of features in the patterned dielectric. A ruthenium layer is disposed over the adhesion promoting layer. A cobalt layer is disposed over the ruthenium layer filling a first portion of the set of features. The cobalt layer is formed using a physical vapor deposition process. A metal layer is disposed over the cobalt layer filling a second portion of the set of features.
    Type: Grant
    Filed: January 23, 2017
    Date of Patent: January 2, 2018
    Assignee: International Business Machines Corporation
    Inventors: Daniel C Edelstein, Chih-Chao Yang
  • Patent number: 9859215
    Abstract: A method for fabricating an advanced metal conductor structure is described. A pattern in a dielectric layer is provided. The pattern includes a set of features in the dielectric for a set of metal conductor structures. An adhesion promoting layer is created over the patterned dielectric. A ruthenium layer is deposited over the adhesion promoting layer. Using a physical vapor deposition process, a cobalt layer is deposited over the ruthenium layer. A thermal anneal is performed which reflows the cobalt layer to fill the set of features to form a set of metal conductor structures. In another aspect of the invention, an integrated circuit device is formed using the method.
    Type: Grant
    Filed: August 17, 2016
    Date of Patent: January 2, 2018
    Assignee: International Business Machines Corporation
    Inventors: Daniel C Edelstein, Chih-Chao Yang