Patents by Inventor David L. Kaplan

David L. Kaplan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10548981
    Abstract: The present invention provides for novel sustained release silk-based delivery systems. The invention further provides methods for producing such formulations. In general, a silk fibroin solution is combined with a therapeutic agent to form a silk fibroin article. The article is then treated in such a way as to alter its conformation. The change in conformation increases its crystallinity or liquid crystallinity, thus controlling the release of a therapeutic agent from the formulation. This can be accomplished as single material carriers or in a layer-by-layer fashion to load different therapeutic agents or different concentrations of these agents in each layer.
    Type: Grant
    Filed: December 3, 2013
    Date of Patent: February 4, 2020
    Assignees: EIDGENOSSISCHES TECHNISCHE HOCHSCHULE (THE SWISS FEDERAL INSTITUTE OF TECHNOLOGY), TRUSTEES OF TUFTS COLLEGE
    Inventors: David L. Kaplan, Lorenz Meinel
  • Patent number: 10513802
    Abstract: Disclosed herein are nanofibrillar materials and aerogel-like materials comprised of nanofibrils, and methods for making such materials.
    Type: Grant
    Filed: November 7, 2014
    Date of Patent: December 24, 2019
    Assignee: Tufts University
    Inventors: Fiorenzo G. Omenetto, David L. Kaplan, Benedetto Marelli, Alexander Nicholas Mitropoulos
  • Publication number: 20190382731
    Abstract: The present invention provides, among other things, powerful new tools for therapeutic and research uses in the central and/or peripheral nervous system. The present invention provides, inter alia, compositions including a plurality of human nerve cells, a plurality of glial cells, and silk fibroin, as well as methods for making and using such compositions.
    Type: Application
    Filed: July 11, 2017
    Publication date: December 19, 2019
    Inventors: David L. Kaplan, William Cantley, Volha Liaudanskaya, Disha Sood, Yu-Ting Dingle, William Collins, Florenzo G. Omenetto
  • Patent number: 10507013
    Abstract: An anchor assembly configured to locate and anchor body tissue surrounding an opening in the body tissue. The anchor assembly can include a plurality of anchor elements. Each anchor element can include an elongate portion and an anchor portion extending from the elongate portion. The elongate portion can be configured to be manipulated by a user. The anchor portion can have a contracted configuration capable of passing through the opening in the body tissue and can have an expanded configuration capable of anchoring the body tissue surrounding the opening. The anchor portion and the elongate portion can be integrally formed from a single wire.
    Type: Grant
    Filed: October 3, 2016
    Date of Patent: December 17, 2019
    Assignee: Abbott Cardiovascular Systems, Inc.
    Inventors: Laveille Kao Voss, Kelly A. Pike, David A. Mackiewicz, Andrew Switky, Gina L. Romero, Jonathan I. Kaplan, Anthony P. Patron
  • Patent number: 10493179
    Abstract: The present invention provides for compositions and methods for preparing aqueous insoluble, ductile, flexible silk fibroin films. The silk films comprise silk fibroin and about 10% to about 50% (w/w) glycerol, and are prepared by entirely aqueous processes. The ductile silk film may be further treated by extracting the glycerol from and re-drying the silk film. Active agents may be embedded in or deposited on the glycerol modified silk film for a variety of medical applications. The films may be shaped into 3-dimensional structures, or placed on support surfaces as labels or coatings. The glycerol modified silk films of the present invention are useful in variety of applications such as tissue engineering, medical devices or implants, drug delivery, and edible pharmaceutical or food labels.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: December 3, 2019
    Assignee: Trustees of Tufts College
    Inventors: Shenzhou Lu, Xiaoqin Wang, Fiorenzo Omenetto, David L. Kaplan
  • Patent number: 10478524
    Abstract: This invention relates to a lamellae tissue layer, comprising a grooved silk fibroin substrate comprising tissue-specific cells. The silk fibroin substrates provides an excellent means of controlling and culturing cell and extracellular matrix development. A multitude of lamellae tissue layers can be used to create a tissue-engineered organ, such as a tissue-engineered cornea. The tissue-engineered organ is non-immunogenic and biocompatible.
    Type: Grant
    Filed: May 19, 2017
    Date of Patent: November 19, 2019
    Assignee: TRUSTEES OF TUFTS COLLEGE
    Inventors: David L. Kaplan, Fiorenzo G. Omenetto, Jeffrey K. Marchant, Noorjahan Panjwani, Brian Lawrence
  • Patent number: 10464361
    Abstract: The present invention provides compositions and methods for printing a predetermined pattern on silk fibroin materials using water based “inks.” Such technique may be useful for micro- and nano-engineering applications.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: November 5, 2019
    Assignee: Tufts University
    Inventors: Fiorenzo G. Omenetto, David L. Kaplan, Miaomiao Yang, Hu Tao, Benedetto Marelli, Sunghwan Kim
  • Patent number: 10441808
    Abstract: Methods and devices are provided for activating brown adipose tissue (BAT) with light. Generally, the methods and devices can activate BAT to increase thermogenesis, e.g., increase heat production in the patient, which over time can lead to weight loss and/or improved metabolic function. In one embodiment, a medical device is provided that activates BAT by using light to stimulate nerves that activate the BAT and/or to stimulate brown adipocytes directly, thereby increasing thermogenesis in the BAT and inducing weight loss and/or improved metabolic function through energy expenditure. The light can be configured to directly or indirectly stimulate the nerves and/or the brown adipocytes. The light can be configured to indirectly stimulate the nerves and/or the brown adipocytes by activating a light activatable medium administered to a patient and configured to respond to the light to cause activation of the brown adipose tissue.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: October 15, 2019
    Assignees: Ethicon Endo-Surgery, Inc., The General Hospital Corporation
    Inventors: Jason L. Harris, Lee M. Kaplan, David N. Plescia, Taylor W. Aronhalt, James W. Voegele, Nicholas Stylopoulos
  • Publication number: 20190300860
    Abstract: The present invention provides, among other things, compositions including a plurality of enterocytes, a plurality of fibroblasts, a plurality of Goblet cells, a plurality of Paneth cells, a plurality of enteroendocrine cells, and a silk fibroin scaffold, wherein the composition exhibits one or more of tight junction formation, microvilli polarization, digestive enzyme secretion, and low oxygen tension and methods of making and using the same. In some embodiments, the composition exhibits one or more of tight junction maintenance, maintenance of microvilli polarization, digestive enzyme secretion, and low oxygen tension for at least 10 days.
    Type: Application
    Filed: July 11, 2017
    Publication date: October 3, 2019
    Inventors: David L. Kaplan, Ying Chen, Wenda Zhou, Dana Cairns, Fiorenzo G. Omenetto, Eleana Manousiouthakis
  • Publication number: 20190282731
    Abstract: In some embodiments, the present disclosure provides compositions including silk fibroin and a phenol-containing polymer, wherein at least one tyrosine group of the silk fibroin is covalently crosslinked to at least one phenol group of the phenol-containing polymer. In some embodiments, the present invention also provides methods including the steps of providing silk fibroin, providing a phenol-containing polymer, associating the silk fibroin with the phenol-containing polymer to form a mixed solution, and crosslinking at least one tyrosine group in the silk fibroin and at least one phenol group of the phenol-containing polymer via at least one enzymatic reaction, wherein the crosslinking comprises covalent bonding between at least one tyrosine group of the silk fibroin and at least one phenol group of the phenol-containing polymer to form a crosslinked composition.
    Type: Application
    Filed: November 22, 2017
    Publication date: September 19, 2019
    Inventors: Nicole R. Raia, David L. Kaplan, Benjamin P. Partlow
  • Publication number: 20190255181
    Abstract: The present disclosure relates generally to compositions and methods for production of three-dimensional constructs with high mechanical strength and/or stiffness.
    Type: Application
    Filed: July 17, 2018
    Publication date: August 22, 2019
    Inventors: David L. Kaplan, Fiorenzo Omenetto, Gary G. Leisk, Tim Jia-Ching Lo, Benjamin Partlow, Rosario Friedman
  • Publication number: 20190247803
    Abstract: The present invention provides, inter alia, compositions including at least one pliable layer comprising a plurality of silk fibroin nanofibrils, and at least one rigid layer comprising a plurality of mineral crystals, wherein each rigid layer is associated with at least one pliable layer, as well as methods for the production and use thereof.
    Type: Application
    Filed: October 24, 2017
    Publication date: August 15, 2019
    Inventors: David L. Kaplan, Markus J. Buehler, Shengjie Ling
  • Publication number: 20190239144
    Abstract: Systems and methods are described for a power aggregation system. In one implementation, a method includes charging an electric resource over a power connection to an electric network, obtaining a unique identifier of a device over the power connection, and determining an electric network location of the electric resource from the unique identifier.
    Type: Application
    Filed: August 9, 2018
    Publication date: August 1, 2019
    Inventors: Seth W. BRIDGES, Seth B. POLLACK, David L. KAPLAN
  • Patent number: 10335519
    Abstract: Provided herein relates to implantable devices and systems with dynamic silk coatings. In some embodiments, the dynamic silk coatings can be formed in situ or in vivo.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: July 2, 2019
    Assignee: TRUSTEES OF TUFTS COLLEGE
    Inventors: David L. Kaplan, Lee W. Tien, Gary G. Leisk, Tim Jia-Ching Lo, Cinzia Metallo, Fiorenzo Omenetto
  • Publication number: 20190175785
    Abstract: The present invention provides for silk fibroin-based compositions comprising one or more antibiotic agents for prevention or treatment of microbial contamination, methods of making antibiotic-containing silk scaffold, methods of stabilizing antibiotics in silk scaffolds, and methods for preventing or treating microbial contamination using the antibiotic-containing compositions. Various methods may be used to embed the antibiotic(s) into the silk fibroin-based compositions. The antibiotic-containing compositions of the invention are particular useful for stabilizing antibiotics, preventing bacterial infections, and for medical implants, tissue engineering, drug delivery systems, or other pharmaceutical or medical applications.
    Type: Application
    Filed: July 12, 2018
    Publication date: June 13, 2019
    Inventors: David L. Kaplan, Bruce Panilaitis, Eleanor M. Pritchard, Fiorenzo G. Omenetto
  • Publication number: 20190177560
    Abstract: The present application discloses biopolymer-based ink formulations that are useful for inkjet printing and other applications. Related methods are also disclosed.
    Type: Application
    Filed: July 6, 2018
    Publication date: June 13, 2019
    Inventors: Fiorenzo G. Omenetto, David L. Kaplan, Hu Tao, Benedetto Marelli, Miaomiao Yang
  • Patent number: 10314938
    Abstract: The present invention provides for concentrated aqueous silk fibroin solutions and an all-aqueous mode for preparation of concentrated aqueous fibroin solutions that avoids the use of organic solvents, direct additives, or harsh chemicals. The invention further provides for the use of these solutions in production of materials, e.g., fibers, films, foams, meshes, scaffolds and hydrogels.
    Type: Grant
    Filed: February 16, 2017
    Date of Patent: June 11, 2019
    Assignee: TRUSTEES OF TUFTS COLLEGE
    Inventors: David L. Kaplan, Ung-Jin Kim, Jaehyung Park, Hyoung-Joon Jin
  • Patent number: 10285702
    Abstract: A bioresorbable drug-eluting biopolymer suture-free blood vessel anastomosis devices can be deployed to join two blood vessels and resorbed by the body over a predetermined time period after the blood vessel has become joined. The anastomosis device can include a hollow tube that is inserted interconnect the two vessels to be jointed. A non-piercing suture is wrapped around the vessel to secure the anastomosis. The anastomosis device can include hollow tube that extends along an axis from a first end to a second end. The ends can be fitted with elements that facilitate mechanical attachment of the vessel to the anastomosis device and provide for a secure seal.
    Type: Grant
    Filed: April 24, 2014
    Date of Patent: May 14, 2019
    Assignees: Trustees of Tufts College, Beth Israel Deaconess Medical Center, Inc.
    Inventors: Rodrigo R. Jose, Waseem K. Raja, David L. Kaplan, Ahmed Ibrahim, Samuel Lin, Abdurrahman Abdurrob
  • Publication number: 20190133752
    Abstract: In some embodiments, the present invention provides tissue compositions including a first silk scaffold comprising a plurality of epithelial cells, a second silk scaffold comprising a plurality of stromal cells, and a plurality of neurons. In some embodiments, provided compositions can function as physiologically relevant corneal model systems for, inter alia, testing of therapeutics for corneal disease and/or injury and production of functional corneal tissue (e.g., for transplant, etc). The present invention also provides methods for making and using provided compositions.
    Type: Application
    Filed: April 27, 2017
    Publication date: May 9, 2019
    Inventors: David L. Kaplan, Siran Wang, Rachel Gomes, Chiara Ghezzi, Dana Cairns
  • Patent number: 10279698
    Abstract: Systems and methods are described for a power aggregation system. In one implementation, a method includes establishing a communication connection with each of multiple electric resources connected to a power grid, receiving an energy generation signal from a power grid operator, and controlling a number of the electric resources being charged by the power grid as a function of the energy generation signal.
    Type: Grant
    Filed: August 11, 2016
    Date of Patent: May 7, 2019
    Assignee: V2Green, Inc.
    Inventors: Seth W. Bridges, Seth B. Pollack, David L. Kaplan