Patents by Inventor David M. Dobuzinsky

David M. Dobuzinsky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8772850
    Abstract: A method of forming a memory cell including forming trenches in a layered semiconductor structure, each trench having an inner sidewall adjacent a section of the layered semiconductor structure between the trenches and an outer sidewall opposite the inner sidewall. The trenches are filled with polysilicon and the patterning layer is formed over the layered semiconductor structure. An opening is then patterned through the patterning layer, the opening exposing the section of the layered semiconductor structure between the trenches and only a vertical portion of the polysilicon along the inner sidewall of each trench. The layered semiconductor structure is then etched. The patterning layer prevents a second vertical portion of the polysilicon along the outer sidewall of each trench from being removed.
    Type: Grant
    Filed: April 18, 2013
    Date of Patent: July 8, 2014
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, David M. Dobuzinsky, Byeong Y. Kim, Munir D. Naeem
  • Publication number: 20130228840
    Abstract: A method of forming a memory cell including forming trenches in a layered semiconductor structure, each trench having an inner sidewall adjacent a section of the layered semiconductor structure between the trenches and an outer sidewall opposite the inner sidewall. The trenches are filled with polysilicon and the patterning layer is formed over the layered semiconductor structure. An opening is then patterned through the patterning layer, the opening exposing the section of the layered semiconductor structure between the trenches and only a vertical portion of the polysilicon along the inner sidewall of each trench. The layered semiconductor structure is then etched. The patterning layer prevents a second vertical portion of the polysilicon along the outer sidewall of each trench from being removed.
    Type: Application
    Filed: April 18, 2013
    Publication date: September 5, 2013
    Applicant: International Business Machines Corporation
    Inventors: Kangguo Cheng, David M. Dobuzinsky, Byeong Y. Kim, Munir D. Naeem
  • Patent number: 8426268
    Abstract: The present invention relates to semiconductor devices, and more particularly to a structure and method for forming memory cells in a semiconductor device using a patterning layer and etch sequence. The method includes forming trenches in a layered semiconductor structure, each trench having an inner sidewall adjacent a section of the layered semiconductor structure between the trenches and an outer sidewall opposite the inner sidewall. The trenches are filled with polysilicon and the patterning layer is formed over the layered semiconductor structure. An opening is then patterned through the patterning layer, the opening exposing the section of the layered semiconductor structure between the trenches and only a vertical portion of the polysilicon along the inner sidewall of each trench. The layered semiconductor structure is then etched. The patterning layer prevents a second vertical portion of the polysilicon along the outer sidewall of each trench from being removed.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: April 23, 2013
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, David M. Dobuzinsky, Byeong Y. Kim, Munir D. Naeem
  • Patent number: 8008713
    Abstract: A semiconductor memory device in which a vertical trench semiconductor-oxide-nitride-oxide-semiconductor (SONOS) memory cell is created in a semiconductor-on-insulator (SOI) substrate is provided that allows for the integration of dense non-volatile random access memory (NVRAM) cells in SOI-based complementary metal oxide semiconductor (CMOS) technology. The trench is processed using conventional trench processing and it is processed near the beginning of the inventive method that allows for the fabrication of the memory cell to be fully separated from SOI logic processing.
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: August 30, 2011
    Assignee: International Business Machines Corporation
    Inventors: David M. Dobuzinsky, Herbert L. Ho, Jack A. Mandelman, Yoichi Otani
  • Patent number: 8003488
    Abstract: A deep trench is formed in a semiconductor-on-insulator (SOI) substrate and a pad layer thereupon. A conductive trench fill region is formed in the deep trench. A planarizing material layer having etch selectivity relative to the pad layer is applied. A portion of the pad layer having an edge that is vertically coincident with a sidewall of the deep trench is exposed by lithographic means. Exposed portion of the pad layer are removed selective to the planarizing material layer, followed by removal of exposed portion of a semiconductor layer selective to the conductive trench fill region by an anisotropic etch. The planarizing material layer is removed and a shallow trench isolation structure having a lower sidewall that is self-aligned to an edge of the original deep trench is formed. Another shallow trench isolation structure may be formed outside the deep trench concurrently.
    Type: Grant
    Filed: September 26, 2007
    Date of Patent: August 23, 2011
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Munir D. Naeem, David M. Dobuzinsky, Byeong Y. Kim
  • Patent number: 7893485
    Abstract: A semiconductor memory device and a design structure including the semiconductor memory device embodied in a machine readable medium is provided. In particular the present invention includes a semiconductor memory device in which a vertical trench semiconductor-oxide-nitride-oxide-semiconductor (SONOS) memory cell is created in a semiconductor-on-insulator (SOI) substrate is provided that allows for the integration of dense non-volatile random access memory (NVRAM) cells in SOI-based complementary metal oxide semiconductor (CMOS) technology. The trench is processed using conventional trench processing and it is processed near the beginning of the inventive method that allows for the fabrication of the memory cell to be fully separated from SOI logic processing.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: February 22, 2011
    Assignee: International Business Machines Corporation
    Inventors: David M. Dobuzinsky, Herbert L. Ho, Jack A. Mandelman, Yoichi Otani
  • Patent number: 7871893
    Abstract: Disclosed are embodiments of a hybrid-orientation technology (HOT) wafer and a method of forming the HOT wafer with improved shallow trench isolation (STI) structures for patterning devices in both silicon-on-insulator (SOI) regions, having a first crystallographic orientation, and bulk regions, having a second crystallographic orientation. The improved STI structures are formed using a non-selective etch process to ensure that all of the STI structures and, particularly, the STI structures at the SOI-bulk interfaces, each extend to the semiconductor substrate and have an essentially homogeneous (i.e., single material) and planar (i.e., divot-free) bottom surface that is approximately parallel to the top surface of the substrate. Optionally, an additional selective etch process can be used to extend the STI structures a predetermined depth into the substrate.
    Type: Grant
    Filed: January 28, 2008
    Date of Patent: January 18, 2011
    Assignee: International Business Machines Corporation
    Inventors: Gregory Costrini, David M. Dobuzinsky, Thomas S. Kanarsky, Munir D. Naeem, Christopher D. Sheraw, Richard Wise
  • Publication number: 20100193852
    Abstract: The present invention relates to semiconductor devices, and more particularly to a structure and method for forming memory cells in a semiconductor device using a patterning layer and etch sequence. The method includes forming trenches in a layered semiconductor structure, each trench having an inner sidewall adjacent a section of the layered semiconductor structure between the trenches and an outer sidewall opposite the inner sidewall. The trenches are filled with polysilicon and the patterning layer is formed over the layered semiconductor structure. An opening is then patterned through the patterning layer, the opening exposing the section of the layered semiconductor structure between the trenches and only a vertical portion of the polysilicon along the inner sidewall of each trench. The layered semiconductor structure is then etched. The patterning layer prevents a second vertical portion of the polysilicon along the outer sidewall of each trench from being removed.
    Type: Application
    Filed: February 2, 2010
    Publication date: August 5, 2010
    Applicant: International Business Machines Corporation
    Inventors: Kangguo Cheng, David M. Dobuzinsky, Byeong Y. Kim, Munir D. Naeem
  • Patent number: 7592245
    Abstract: Embodiments herein present a method for forming a poly filled substrate contact on a SOI structure. The method forms an insulator on a substrate and forms a substrate contact hole within the insulator. The insulator surface level is higher than final structure. Next, a poly overfill is performed, comprising filling the substrate contact hole with polysilicon and covering the insulator with the polysilicon. Specifically, the thickness of the polysilicon is greater than the size of the substrate contact hole. Following this, the polysilicon is etched, wherein a portion of the polysilicon is removed, and wherein the substrate contact hole is left partially filled with the polysilicon. Further, the etching of the polysilicon forms a concave recess within a top portion of the polysilicon. The etching of said polysilicon does not contact the substrate. The excess of insulator is polished off to the desired level.
    Type: Grant
    Filed: January 15, 2008
    Date of Patent: September 22, 2009
    Assignee: International Business Machines Corporation
    Inventors: David M. Dobuzinsky, Byeong Y. Kim, Effendi Leobandung, Munir D. Naeem, Brian L. Tessier
  • Publication number: 20090224308
    Abstract: A semiconductor memory device in which a vertical trench semiconductor-oxide-nitride-oxide-semiconductor (SONOS) memory cell is created in a semiconductor-on-insulator (SOI) substrate is provided that allows for the integration of dense non-volatile random access memory (NVRAM) cells in SOI-based complementary metal oxide semiconductor (CMOS) technology. The trench is processed using conventional trench processing and it is processed near the beginning of the inventive method that allows for the fabrication of the memory cell to be fully separated from SOI logic processing.
    Type: Application
    Filed: March 25, 2009
    Publication date: September 10, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: David M. Dobuzinsky, Herbert L. Ho, Jack A. Mandelman, Yoichi Otani
  • Publication number: 20090189242
    Abstract: Disclosed are embodiments of a hybrid-orientation technology (HOT) wafer and a method of forming the HOT wafer with improved shallow trench isolation (STI) structures for patterning devices in both silicon-on-insulator (SOI) regions, having a first crystallographic orientation, and bulk regions, having a second crystallographic orientation. The improved STI structures are formed using a non-selective etch process to ensure that all of the STI structures and, particularly, the STI structures at the SOI-bulk interfaces, each extend to the semiconductor substrate and have an essentially homogeneous (i.e., single material) and planar (i.e., divot-free) bottom surface that is approximately parallel to the top surface of the substrate. Optionally, an additional selective etch process can be used to extend the STI structures a predetermined depth into the substrate.
    Type: Application
    Filed: January 28, 2008
    Publication date: July 30, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Gregory Costrini, David M. Dobuzinsky, Thomas S. Kanarsky, Munir D. Naeem, Christopher D. Sheraw, Richard Wise
  • Patent number: 7560360
    Abstract: Methods for enhancing trench capacitance and a trench capacitor so formed are disclosed. In one embodiment a method includes forming a first portion of a trench; depositing a dielectric layer in the first portion; performing a reactive ion etching including a first stage to etch the dielectric layer and form a micro-mask on a bottom surface of the first portion of the trench and a second stage to form a second portion of the trench having a rough sidewall; depositing a node dielectric; and filling the trench with a conductor. The rough sidewall enhances trench capacitance without increasing processing complexity or cost.
    Type: Grant
    Filed: August 30, 2006
    Date of Patent: July 14, 2009
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, David M. Dobuzinsky, Xi Li
  • Publication number: 20090158234
    Abstract: A semiconductor memory device and a design structure including the semiconductor memory device embodied in a machine readable medium is provided. In particular the present invention includes a semiconductor memory device in which a vertical trench semiconductor-oxide-nitride-oxide-semiconductor (SONOS) memory cell is created in a semiconductor-on-insulator (SOI) substrate is provided that allows for the integration of dense non-volatile random access memory (NVRAM) cells in SOI-based complementary metal oxide semiconductor (CMOS) technology. The trench is processed using conventional trench processing and it is processed near the beginning of the inventive method that allows for the fabrication of the memory cell to be fully separated from SOI logic processing.
    Type: Application
    Filed: December 13, 2007
    Publication date: June 18, 2009
    Applicant: INTERNATIONAL MACHINES BUSINESS CORPORATION
    Inventors: David M. Dobuzinsky, Herbert L. Ho, Jack A. Mandelman, Yoichi Otani
  • Publication number: 20090104776
    Abstract: A method for forming lines for semiconductor devices including, depositing a shallow trench isolation (STI) film stack on a silicon substrate, depositing a layer of polysilicon on the STI film stack, depositing a layer of antireflective coating on the layer of polysilicon, developing a phototoresist on the antireflective coating, wherein the photoresist defines a line, etching the layer of antireflective coating and the layer of polysilicon using RIE with a low bias power, removing the photoresist, removing the layer of antireflective coating, etching the STI film stack to form the line, wherein the layer of polysilicon further defines the line.
    Type: Application
    Filed: October 18, 2007
    Publication date: April 23, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: David M. Dobuzinsky, Johnathan E. Faltermeier, Naoyoshi Kusaba, Joyce C. Liu, Munir D. Naeem, Siddhartha Panda, Richard S. Wise, Hongwen Yan
  • Patent number: 7514323
    Abstract: A semiconductor memory device in which a vertical trench semiconductor-oxide-nitride-oxide-semiconductor (SONOS) memory cell is created in a semiconductor-on-insulator (SOI) substrate is provided that allows for the integration of dense non-volatile random access memory (NVRAM) cells in SOI-based complementary metal oxide semiconductor (CMOS) technology. The trench is processed using conventional trench processing and it is processed near the beginning of the inventive method that allows for the fabrication of the memory cell to be fully separated from SOI logic processing.
    Type: Grant
    Filed: November 28, 2005
    Date of Patent: April 7, 2009
    Assignee: International Business Machines Corporation
    Inventors: David M. Dobuzinsky, Herbert L. Ho, Jack A. Mandelman, Yoichi Otani
  • Publication number: 20090079027
    Abstract: A deep trench is formed in a semiconductor-on-insulator (SOI) substrate and a pad layer thereupon. A conductive trench fill region is formed in the deep trench. A planarizing material layer having etch selectivity relative to the pad layer is applied. A portion of the pad layer having an edge that is vertically coincident with a sidewall of the deep trench is exposed by lithographic means. Exposed portion of the pad layer are removed selective to the planarizing material layer, followed by removal of exposed portion of a semiconductor layer selective to the conductive trench fill region by an anisotropic etch. The planarizing material layer is removed and a shallow trench isolation structure having a lower sidewall that is self-aligned to an edge of the original deep trench is formed. Another shallow trench isolation structure may be formed outside the deep trench concurrently.
    Type: Application
    Filed: September 26, 2007
    Publication date: March 26, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Munir D. Naeem, David M. Dobuzinsky, Byeong Y. Kim
  • Publication number: 20090047791
    Abstract: A method of etching semiconductor structures is disclosed. The method may include etching an SRAM portion of a semiconductor device, the method comprising: providing a silicon substrate layer, a nitride layer thereover, an optical dispersive layer over the nitride layer, and a silicon anti-reflective coating layer thereover; etching the silicon anti-reflective coating layer using an image layer; removing the image layer; etching the optical dispersive layer while removing the silicon anti-reflective coating layer; etching the optical dispersive layer and the nitride layer simultaneously; and etching the optical dispersive layer, the nitride layer, and the silicon substrate simultaneously.
    Type: Application
    Filed: August 16, 2007
    Publication date: February 19, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: David M. Dobuzinsky, Johnathan E. Faltermeier, Munir D. Naeem, William C. Wille, Richard S. Wise
  • Publication number: 20080248625
    Abstract: Methods for enhancing trench capacitance and a trench capacitor so formed are disclosed. In one embodiment a method includes forming a first portion of a trench; depositing a dielectric layer in the first portion; performing a reactive ion etching including a first stage to etch the dielectric layer and form a micro-mask on a bottom surface of the first portion of the trench and a second stage to form a second portion of the trench having a rough sidewall; depositing a node dielectric; and filling the trench with a conductor. The rough sidewall enhances trench capacitance without increasing processing complexity or cost.
    Type: Application
    Filed: May 14, 2008
    Publication date: October 9, 2008
    Inventors: Kangguo Cheng, David M. Dobuzinsky, Xi Li
  • Patent number: 7394131
    Abstract: Methods for forming or etching silicon trench isolation (STI) in a silicon-on-insulator (SOI) region and a bulk silicon region, and a semiconductor device so formed, are disclosed. The STI can be etched simultaneously in the SOI and bulk silicon regions by etching to an uppermost silicon layer using an STI mask, conducting a timed etch that etches to a desired depth in the bulk silicon region and stops on a buried insulator of the SOI region, and etching through the buried insulator of the SOI region. The buried insulator etch for this process can be done with little complexity as part of a hardmask removal step. Further, by choosing the same depth for both the bulk and SOI regions, problems with a subsequent CMP process are avoided. The invention also cleans up the boundary between the SOI and bulk regions where silicon nitride residuals may exist.
    Type: Grant
    Filed: June 21, 2006
    Date of Patent: July 1, 2008
    Assignee: International Business Machines Corporation
    Inventors: Michael D. Steigerwalt, Mahender Kumar, Herbert L. Ho, David M. Dobuzinsky, Johnathan E. Faltermeier, Denise Pendleton
  • Publication number: 20080122030
    Abstract: Methods for enhancing trench capacitance and a trench capacitor so formed are disclosed. In one embodiment a method includes forming a first portion of a trench; depositing a dielectric layer in the first portion; performing a reactive ion etching including a first stage to etch the dielectric layer and form a micro-mask on a bottom surface of the first portion of the trench and a second stage to form a second portion of the trench having a rough sidewall; depositing a node dielectric; and filling the trench with a conductor. The rough sidewall enhances trench capacitance without increasing processing complexity or cost.
    Type: Application
    Filed: August 30, 2006
    Publication date: May 29, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, David M. Dobuzinsky, Xi Li