METHODS FOR ENHANCING TRENCH CAPACITANCE AND TRENCH CAPACITOR
Methods for enhancing trench capacitance and a trench capacitor so formed are disclosed. In one embodiment a method includes forming a first portion of a trench; depositing a dielectric layer in the first portion; performing a reactive ion etching including a first stage to etch the dielectric layer and form a micro-mask on a bottom surface of the first portion of the trench and a second stage to form a second portion of the trench having a rough sidewall; depositing a node dielectric; and filling the trench with a conductor. The rough sidewall enhances trench capacitance without increasing processing complexity or cost.
This patent application is a divisional of U.S. patent application Ser. No. 11/468,472, filed Aug. 30, 2006, currently pending.
BACKGROUND OF THE INVENTION1. Technical Field
The invention relates generally to memory fabrication, and more particularly, to methods for enhancing trench capacitance and a trench capacitor so formed.
2. Background Art
Capacitance enhancement is essential for trench technology scaling. There are a variety of techniques to increase a surface area of trenches to increase capacitance. In one approach, the trench is formed in a bottle shape to increase the surface area. This approach, however, requires a sacrificial collar, and is susceptible to trench merging. The bottle shape approach also requires extra process steps. In another approach, hemispherical silicon grains (HSG) are formed on a sidewall of the trench to increase its surface area. This approach also requires a sacrificial collar and extra process steps, and further, narrows the trench. Use of new high dielectric constant materials (such as aluminum oxide or hafnium oxide) has also been proposed, but this approach requires new materials and presents numerous integration issues. It is therefore desired to have a capacitance enhancement without adding process complexity and cost.
SUMMARY OF THE INVENTIONMethods for enhancing trench capacitance and a trench capacitor so formed are disclosed. In one embodiment a method includes forming a first portion of a trench; depositing a dielectric layer in the first portion; performing a reactive ion etching including a first stage to etch the dielectric layer and form a micro-mask on a bottom surface of the first portion of the trench and a second stage to form a second portion of the trench having a rough sidewall; depositing a node dielectric; and filling the trench with a conductor. The rough sidewall enhances trench capacitance without increasing processing complexity or cost.
A first aspect of the invention provides a method of forming a trench capacitor, the method comprising: forming a first portion of a trench; depositing a dielectric layer in the first portion; performing a reactive ion etching including a first stage to etch the dielectric layer and form a micro-mask on a bottom surface of the first portion of the trench and a second stage to form a second portion of the trench having a rough sidewall; depositing a node dielectric; and filling the trench with a conductor.
A second aspect of the invention provides a trench capacitor comprising: a deep trench in a substrate; a first electrode in the substrate; a second electrode in the deep trench; and a dielectric between the first and the second electrodes, wherein the deep trench has sidewalls with roughness having an average amplitude of less than approximately 5 nanometers.
A third aspect of the invention provides a method comprising: forming a trench having a dielectric layer therein; and first reactive ion etching (RIE) the dielectric layer in the trench to form a micro-mask on a bottom surface of the trench.
The illustrative aspects of the present invention are designed to solve the problems herein described and/or other problems not discussed.
These and other features of this invention will be more readily understood from the following detailed description of the various aspects of the invention taken in conjunction with the accompanying drawings that depict various embodiments of the invention, in which:
It is noted that the drawings of the invention are not to scale. The drawings are intended to depict only typical aspects of the invention, and therefore should not be considered as limiting the scope of the invention. In the drawings, like numbering represents like elements between the drawings.
DETAILED DESCRIPTIONTurning to drawings,
As shown in
In a first stage 130, the process conditions include approximately 50 milliTorr (mT) pressure, approximately 300 standard cubic centimeters (sccm) hydrogen bromide (HBr), approximately 75 sccm ammonia (NF3), approximately 5 sccm oxygen (O2) and a power configuration that removes dielectric layer 124 (
Methods for forming node dielectric 150 and inner electrode 164 material include but are not limited to thermal oxidation, chemical oxidation, thermal nitridation, atomic layer deposition (ALD), low-pressure chemical vapor deposition (LPCVD), plasma enhanced chemical vapor deposition (PECVD), high density plasma chemical vapor deposition (HDPCVD), sub-atmospheric chemical vapor deposition (SACVD), rapid thermal chemical vapor deposition (RTCVD), limited reaction processing CVD (LRPCVD), ultrahigh vacuum chemical vapor deposition (UHVCVD), metalorganic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), physical vapor deposition, sputtering, plating, evaporation, ion beam deposition, electron beam deposition and/or laser assisted deposition.
In another embodiment, shown in
The above-described methods integrate the dielectric spacer 136, 236 RIE process with deep trench 142, 242 etch process, which eliminates conventional dedicated spacer RIE and post-clean processes, and therefore significantly saves process time. Furthermore, the above-described embodiments remove the need to dedicate equipment to dielectric spacer RIE and thus reduce the cost associated with equipment investment and maintenance. In addition, an approximately 12-15% trench capacitance enhancement is achieved through rough sidewall 144, 244 by increasing the trench surface area. Furthermore, the above-described methods have advanced scalability because the roughness on trench sidewall is in the nano-scale. The merging trench issue in conventional trench widening approaches is eliminated. Finally, the above-described methods are fully compatible with existing trench processes. No exotic materials and processes are needed to enhance trench capacitance.
In one embodiment, trench capacitor 100, 200 includes deep trench 122, 222 in substrate 104, 204; first electrode 160, 260 in substrate 104, 204, second electrode 166, 266 in deep trench 122, 222, and dielectric 150, 250 between the first and the second electrodes. As noted above, deep trench 122, 222 has rough sidewall 144, 244 with roughness having an average amplitude of approximately 5 nanometers, which is significantly smaller than conventional devices. A spacer 136, 236 may be disposed in an upper portion 120, 220 of deep trench 122, 222. First electrode 160, 260 may include buried plate 162, 262 in substrate 104, 204, which is self-aligned to spacer 136, 236.
It is understood that optionally, other trench capacitance enhancements can be performed before or after the above-described methods. Capacitance can be enhanced by forming a bottle-shape in the lower trench section, roughening the sidewalls of the lower trench section by forming hemispherical silicon grains (HSG) thereon, or by any other suitable conventional trench capacitance enhancement method. The combination of two or more of these conventional approaches, such as the combination of bottling and HSG with the teachings of the invention, can be performed.
The method as described above is used in the fabrication of integrated circuit chips. The resulting integrated circuit chips can be distributed by the fabricator in raw wafer form (that is, as a single wafer that has multiple unpackaged chips), as a bare die, or in a packaged form. In the latter case the chip is mounted in a single chip package (such as a plastic carrier, with leads that are affixed to a motherboard or other higher level carrier) or in a multichip package (such as a ceramic carrier that has either or both surface interconnections or buried interconnections). In any case the chip is then integrated with other chips, discrete circuit elements, and/or other signal processing devices as portion of either (a) an intermediate product, such as a motherboard, or (b) an end product. The end product can be any product that includes integrated circuit chips, ranging from toys and other low-end applications to advanced computer products having a display, a keyboard or other input device, and a central processor.
The foregoing description of various aspects of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed, and obviously, many modifications and variations are possible. Such modifications and variations that may be apparent to a person skilled in the art are intended to be included within the scope of the invention as defined by the accompanying claims.
Claims
1. A method of forming a trench capacitor, the method comprising:
- forming a first portion of a trench;
- depositing a dielectric layer in the first portion;
- performing a reactive ion etching including a first stage to etch the dielectric layer and form a micro-mask on a bottom surface of the first portion of the trench and a second stage to form a second portion of the trench having a rough sidewall;
- depositing a node dielectric; and
- filling the trench with a conductor.
2. The method of claim 1, further comprising forming a buried plate in the second portion of the trench.
3. The method of claim 1, wherein the etching in the first stage includes a non-uniform reactive ion etch.
4. The method of claim 1, wherein the dielectric layer includes silicon nitride.
5. The method of claim 1, wherein the etching, including the first stage and the second stage, occurs in a single process chamber.
6. The method of claim 1, wherein the rough sidewall has dimensions of a nanometer scale.
7. The method of claim 6, wherein the rough sidewall has an average amplitude of less than approximately 5 nanometers.
8. A method comprising:
- forming a trench having a dielectric layer therein; and
- first reactive ion etching (RIE) the dielectric layer in the trench to form a micro-mask on a bottom surface of the trench.
9. The method of claim 8, wherein the first RIE forms a spacer on a sidewall of the trench.
10. The method of claim 8, wherein the first RIE is non-uniform.
11. The method of claim 8, further comprising a second reactive ion etching (RIE) to extend the trench into a substrate to form a deep trench below the spacer.
12. The method of claim 11, wherein the second RIE forms the trench with nanometer scale roughness on a trench sidewall.
13. The method of claim 12, wherein the roughness on the trench sidewall has an average amplitude of less than approximately 5 nanometers.
14. The method of claim 12, wherein the first RIE and the second RIE occur in a single process chamber.
Type: Application
Filed: May 14, 2008
Publication Date: Oct 9, 2008
Inventors: Kangguo Cheng (Beacon, NY), David M. Dobuzinsky (New Windsor, NY), Xi Li (Somers, NY)
Application Number: 12/120,535
International Classification: H01L 21/441 (20060101);