Patents by Inventor Deepak C. Sekar

Deepak C. Sekar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8709880
    Abstract: A method of manufacturing semiconductor devices: providing a first device including a first die and second die, where the first die is diced from a first wafer, the second die is diced from a second wafer, the first die is connected to the second die using at least one through-silicon-via; providing a second device including a third die and fourth die, where the third die is diced from a third wafer, the fourth die is diced from a fourth wafer, the third die is connected to the fourth die using at least one through-silicon-via; where the first die includes a first functionality and the third die includes a second functionality, the first functionality is different than the second functionality, a majority of the masks used for processing the first wafer and the third wafer are the same; and the second die size is substantially different than the fourth die size.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: April 29, 2014
    Assignee: Monolithic 3D Inc
    Inventors: Zvi Or-Bach, Deepak C. Sekar, Brian Cronquist, Israel Beinglass, Jan Lodewijk de Jong
  • Patent number: 8686419
    Abstract: A memory device in a 3-D read and write memory includes a resistance-changing layer, and a local contact resistance in series with, and local to, the resistance-changing layer. The local contact resistance is established by a junction between a semiconductor layer and a metal layer. Further, the local contact resistance has a specified level of resistance according to a doping concentration of the semiconductor and a barrier height of the junction. A method for fabricating such a memory device is also presented.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: April 1, 2014
    Assignee: SanDisk 3D LLC
    Inventors: Franz Kreupl, Deepak C Sekar
  • Patent number: 8687399
    Abstract: An Integrated device comprising a first monocrystalline layer comprising logic circuit regions and a second monocrystalline layer comprising memory regions constructed above first monocrystalline layer, wherein the memory regions comprise second transistors, wherein said second transistors comprise drain and source that are horizontally oriented with respect to the second monocrystalline layer, and a multiplicity of vias through the second monocrystalline layer providing connections between the memory regions and the logic circuit regions, wherein at least one of the multiplicity of vias have a radius of less than 100 nm.
    Type: Grant
    Filed: October 2, 2011
    Date of Patent: April 1, 2014
    Assignee: Monolithic 3D Inc.
    Inventors: Deepak C Sekar, Zvi Or-Bach, Paul Lim
  • Patent number: 8664042
    Abstract: A method to construct configurable systems, the method including: providing a first configurable system including a first die and a second die, where the connections between the first die and the second die include through-silicon-via (“TSV”), where the first die is diced from a first wafer using first dice lines; providing a second configurable system including a third die and a fourth die, where the connections between the third die and the fourth die include through-silicon-via (“TSV”), where the third die is diced from a third wafer using third dice lines; and processing the first wafer and the third wafer utilizing at least 20 masks that are the same; where the first dice lines are substantially different than the third dice lines, and where the second die includes a configurable I/O to connect the first configurable system to external devices.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: March 4, 2014
    Assignee: Monolithic 3D Inc.
    Inventors: Zvi Or-Bach, Deepak C. Sekar, Brian Cronquist, Israel Beinglass, Jan Lodewijk de Jong
  • Patent number: 8637845
    Abstract: Optimized electrodes for ReRAM memory cells and methods for forming the same are discloses. One aspect comprises forming a first electrode, forming a state change element in contact with the first electrode, treating the state change element, and forming a second electrode. Treating the state change element increases the barrier height at the interface between the second electrode and the state change element. Another aspect comprises forming a first electrode in a manner to deliberately establish a certain degree of amorphization in the first electrode, forming a state change element in contact with the first electrode. The degree of amorphization of the first electrode is either at least as great as the degree of amorphization of the state change element or no more than 5 percent less than the degree of amorphization of the state change element.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: January 28, 2014
    Assignee: SanDisk 3D LLC
    Inventors: Deepak C. Sekar, April Schricker, Xiying Chen, Klaus Schuegraf
  • Patent number: 8581349
    Abstract: A 3D memory device, including: a first memory layer including a first memory transistor with side gates; a second memory layer including a second memory transistor with side gates; and a periphery circuits layer including logic transistors for controlling the memory, the periphery circuits are covered by a first isolation layer, where the first memory layer includes a first monolithically mono-crystal layer directly bonded to a second isolation layer, and the second memory layer includes a second monolithically mono-crystal layer directly bonded to the second isolation layer, and the first mono-crystal layer is bonded on top of the first isolation layer, and the second memory transistor is self-aligned to the first memory transistor.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: November 12, 2013
    Assignee: Monolithic 3D Inc.
    Inventors: Deepak C. Sekar, Zvi Or-Bach, Brian Cronquist
  • Patent number: 8575715
    Abstract: A storage system and method for forming a storage system that uses punch-through diodes as a steering element in series with a reversible resistivity-switching element is described. The punch-through diode allows bipolar operation of a cross-point memory array. The punch-through diode may have a symmetrical non-linear current/voltage relationship. The punch-through diode has a high current at high bias for selected cells and a low leakage current at low bias for unselected cells. Therefore, it is compatible with bipolar switching in cross-point memory arrays having resistive switching elements. The punch-through diode may be a N+/P?/N+ device or a P+/N?/P+ device.
    Type: Grant
    Filed: August 9, 2012
    Date of Patent: November 5, 2013
    Assignee: SanDisk 3D LLC
    Inventors: Andrei Mihnea, Deepak C. Sekar, George Samachisa, Roy Scheuerlein, Li Xiao
  • Patent number: 8557632
    Abstract: A method to process an Integrated Circuit device including processing a first layer of first transistors, then processing a first metal layer overlaying the first transistors and providing at least one connection to the first transistors, then processing a second metal layer overlaying the first metal layer, then processing a second layer of second transistors overlaying the second metal layer, wherein the second metal layer is connected to provide power to at least one of the second transistors.
    Type: Grant
    Filed: April 9, 2012
    Date of Patent: October 15, 2013
    Assignee: Monolithic 3D Inc.
    Inventors: Zvi Or-Bach, Deepak C. Sekar, Brian Cronquist
  • Publication number: 20130267046
    Abstract: A method to process an Integrated Circuit device including processing a first layer of first transistors, then processing a first metal layer overlaying the first transistors and providing at least one connection to the first transistors, then processing a second metal layer overlaying the first metal layer, then processing a second layer of second transistors overlaying the second metal layer, wherein the second metal layer is connected to provide power to at least one of the second transistors.
    Type: Application
    Filed: April 9, 2012
    Publication date: October 10, 2013
    Inventors: Zvi OR-BACH, Deepak C. SEKAR, Brian CRONQUIST
  • Patent number: 8541819
    Abstract: A semiconductor device including: a first mono-crystal layer and a second mono-crystal layer and at least one conductive layer in-between; where the at least one conductive layer includes a first conductive layer overlaying a second conductive layer overlying a third conductive layer, and where the second conductive layer having a predetermined second layer current carrying capacity greater than the current carrying capacity of the first conductive layer, and the second conductive layer current carrying capacity being greater than the current carrying capacity of the third conductive layer.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: September 24, 2013
    Assignee: Monolithic 3D Inc.
    Inventors: Zvi Or-Bach, Brian Cronquist, Israel Beinglass, Jan Lodewijk de Jong, Deepak C. Sekar
  • Publication number: 20130241026
    Abstract: A device including a first layer of first transistors interconnected by at least one first interconnection layer, wherein the first interconnection layer includes copper or aluminum, a second layer including second transistors, the second layer overlaying the first interconnection layer, wherein the second layer is less than 2 micron thick, wherein the second layer has a coefficient of thermal expansion; and a connection path connecting at least one of the second transistors to the first interconnection layer, wherein the connection path includes at least one through-layer via, and wherein the through-layer via includes material whose co-efficient of thermal expansion is within 50 percent of the second layer coefficient of thermal expansion.
    Type: Application
    Filed: March 17, 2012
    Publication date: September 19, 2013
    Inventors: Zvi Or-Bach, Deepak C. Sekar, Brian Cronquist
  • Patent number: 8536023
    Abstract: A method of manufacturing semiconductor wafers, the method including: providing a donor wafer including a semiconductor substrate; performing a lithography step and processing the donor wafer; and performing at least two subsequent steps of layer transfer out of the donor wafer, each layer transfer step producing a transferred layer, where each of the transferred layers had been affected by the lithography step, and where each of the transferred layer includes a plurality of transistors with side gates, and where the layer transfer includes an ion-cut, the ion-cut including an ion implant thru the transistors.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: September 17, 2013
    Assignee: Monolithic 3D Inc.
    Inventors: Zvi Or-Bach, Deepak C. Sekar, Brian Cronquist
  • Publication number: 20130234099
    Abstract: Non-volatile storage elements having a reversible resistivity-switching element and techniques for fabricating the same are disclosed herein. The reversible resistivity-switching element may be formed by depositing an oxygen diffusion resistant material (e.g., heavily doped Si, W, WN) over the top electrode. A trap passivation material (e.g., fluorine, nitrogen, hydrogen, deuterium) may be incorporated into one or more of the bottom electrode, a metal oxide region, or the top electrode of the reversible resistivity-switching element. One embodiment includes a reversible resistivity-switching element having a bi-layer capping layer between the metal oxide and the top electrode. Fabricating the device may include depositing (un-reacted) titanium and depositing titanium oxide in situ without air break. One embodiment includes incorporating titanium into the metal oxide of the reversible resistivity-switching element.
    Type: Application
    Filed: March 21, 2013
    Publication date: September 12, 2013
    Applicant: SANDISK 3D LLC
    Inventors: Deepak C. Sekar, Franz Kreupl, Raghuveer S. Makala, Peter Rabkin, Chu-Chen Fu, Tong Zhang
  • Publication number: 20130193488
    Abstract: A semiconductor device including: a first single crystal layer including first transistors, first alignment mark, and at least one metal layer, said at least one metal layer overlying said first single crystal layer, wherein the at least one metal layer includes copper or aluminum; and a second layer overlying the at least one metal layer; wherein the second layer includes second transistors, the second transistors include mono-crystal, the second transistors include P type transistors and N type transistors, and the second transistors are aligned to the first alignment mark with less than 40 nm alignment error.
    Type: Application
    Filed: November 21, 2012
    Publication date: August 1, 2013
    Applicant: MONOLITHIC 3D INC.
    Inventors: Zvi Or-Bach, Deepak C. Sekar, Brian Cronquist
  • Patent number: 8498146
    Abstract: A storage system and method for operating the storage system that uses reversible resistance-switching elements is described. Techniques are disclosed herein for varying programming conditions to account for different resistances that memory cells have. These techniques can program memory cells in fewer attempts, which can save time and/or power. Techniques are disclosed herein for achieving a high programming bandwidth while reducing the worst case current and/or power consumption.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: July 30, 2013
    Assignee: SanDisk 3D LLC
    Inventors: Deepak C. Sekar, Klaus Schuegraf, Roy Scheuerlein
  • Patent number: 8487292
    Abstract: A non-volatile resistance-switching memory element includes a resistance-switching element formed from a metal oxide layer having a dopant which is provided at a relatively high concentration such as 10% or greater. Further, the dopant is a cation having a relatively large ionic radius such as 70 picometers or greater, such as Magnesium, Chromium, Calcium, Scandium or Yttrium. A cubic fluorite phase lattice may be formed in the metal oxide even at room temperature so that switching power may be reduced. The memory element may be pillar-shaped, extending between first and second electrodes and being in series with a steering element such as a diode. The metal oxide layer may be deposited at the same time as the dopant. Or, using atomic layer deposition, an oxide of a first metal can be deposited, followed by an oxide of a second metal, followed by annealing to cause intermixing, in repeated cycles.
    Type: Grant
    Filed: July 23, 2010
    Date of Patent: July 16, 2013
    Assignee: SanDisk 3D LLC
    Inventors: Deepak C. Sekar, Franz Kreupl
  • Patent number: 8476145
    Abstract: A method to fabricate a semiconductor device, including the sequence of: implanting one or more regions on a semiconductor wafer forming a doped layer; performing a first transfer of the doped layer onto a carrier; and then performing a second transfer of the doped layer from the carrier to a target wafer; and then etching said one or more regions of the doped layer to form transistors on the doped layer.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: July 2, 2013
    Assignee: Monolithic 3D Inc.
    Inventors: Zvi Or-Bach, Brian Cronquist, Isreal Beinglass, Jan Lodewijk de Jong, Deepak C. Sekar
  • Patent number: 8461035
    Abstract: A method for fabricating a device, the method including: providing a first layer including first transistors wherein the first transistors include mono-crystalline semiconductor and first alignment marks; overlaying a second semiconductor layer over the first layer, wherein the second layer includes second transistors, the second transistors include mono-crystalline semiconductor and are configured to be memory cells, at least one of the memory cells include a floating body region configured to be charged to a level indicative of a state of the memory cell, and fabricating the second transistors includes alignment to the first alignment marks.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: June 11, 2013
    Assignee: Monolithic 3D Inc.
    Inventors: Brian Cronquist, Isreal Beinglass, Jan Lodewijk de Jong, Deepak C. Sekar, Zvi Or-Bach
  • Patent number: 8440542
    Abstract: A method of manufacturing a semiconductor wafer, the method comprising: providing a base wafer comprising a semiconductor substrate; preparing a first monocrystalline layer comprising semiconductor regions; preparing a second monocrystalline layer comprising semiconductor regions overlying the first monocrystalline layer; and etching portions of said first monocrystalline layer and portions of said second monocrystalline layer as part of forming at least one transistor on said first monocrystalline layer.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: May 14, 2013
    Assignee: Monolithic 3D Inc.
    Inventors: Deepak C. Sekar, Zvi Or-Bach
  • Patent number: 8435831
    Abstract: Non-volatile storage elements having a reversible resistivity-switching element and techniques for fabricating the same are disclosed herein. The reversible resistivity-switching element may be formed by depositing an oxygen diffusion resistant material (e.g., heavily doped Si, W, WN) over the top electrode. A trap passivation material (e.g., fluorine, nitrogen, hydrogen, deuterium) may be incorporated into one or more of the bottom electrode, a metal oxide region, or the top electrode of the reversible resistivity-switching element. One embodiment includes a reversible resistivity-switching element having a bi-layer capping layer between the metal oxide and the top electrode. Fabricating the device may include depositing (un-reacted) titanium and depositing titanium oxide in situ without air break. One embodiment includes incorporating titanium into the metal oxide of the reversible resistivity-switching element.
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: May 7, 2013
    Assignee: SanDisk 3D LLC
    Inventors: Deepak C. Sekar, Franz Kreupl, Raghuveer Makala, Peter Rabkin