Patents by Inventor Dong Pan

Dong Pan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180180805
    Abstract: Various embodiments of a fully integrated avalanche photodiode receiver and manufacturing method thereof are described herein. A photonic device includes a silicon-on-insulator (SOI) substrate with a buried oxide (BOX) layer therein, an avalanche photodiode integrated with the SOI substrate, a capacitor integrated with the SOI substrate, a resistor integrated with the SOI substrate, and silicon passive waveguides as well as bonding pads integrated with the SOI substrate.
    Type: Application
    Filed: December 21, 2017
    Publication date: June 28, 2018
    Inventors: Mengyuan Huang, Tzung-I Su, Su Li, Naichuan Zhang, Pengfei Cai, Wang Chen, Ching-yin Hong, Dong Pan
  • Patent number: 10001793
    Abstract: An apparatus is described comprising a bandgap reference circuit comprising: an amplifier including first and second inputs and an output; and a bandgap transistor coupled to the output of the amplifier at a control electrode thereof, the bandgap transistor being further coupled commonly to the first and second inputs of the amplifier at a first electrode thereof to form a feedback path. The apparatus further comprises a resistor coupled to the first electrode of the bandgap transistor.
    Type: Grant
    Filed: July 28, 2015
    Date of Patent: June 19, 2018
    Assignee: Micron Technology, Inc.
    Inventors: Wei Lu Chu, Dong Pan
  • Publication number: 20180167057
    Abstract: Apparatus and methods for a delay circuit are provided. In an example, a delay circuit can include a resistor configured to receive a compensation current, a capacitor configured to receive a charge current based on the compensation current, a first compensation circuit configured to provide a control signal, and a charge-current coupling circuit. The first compensation circuit can include an inverter circuit configured to track an inverter threshold voltage across process, voltage and temperature variations, wherein an output of the inverter circuit is directly coupled to an input of the inverter circuit, and an amplifier configured to receive the output of the inverter circuit an provide the control signal. The charge-current coupling circuit can be configured to receive the control signal and to provide the compensation current and the charge current.
    Type: Application
    Filed: December 8, 2016
    Publication date: June 14, 2018
    Inventors: Dong Pan, Wei Lu Chu
  • Publication number: 20180167030
    Abstract: Apparatuses and methods for temperature independent oscillator circuits are disclosed herein. An example apparatus may include a pulse generator circuit configured to provide a periodic pulse based on the charging and discharging of a capacitor and further based on a reference voltage. The pulse generator circuit may include a capacitor coupled between a first reference voltage and a first node, wherein the capacitor is configured to be charged and discharged through the node in response to the periodic pulse, a resistor and a diode coupled in series between a second node and a second reference voltage, and a comparator coupled to the first and second nodes and configured to provide the periodic pulse based on voltages on the first and second nodes, wherein a period of the periodic pulse is based at least on the resistor and the a current.
    Type: Application
    Filed: September 2, 2015
    Publication date: June 14, 2018
    Inventors: JUN WU, DONG PAN
  • Patent number: 9977187
    Abstract: Various embodiments of an integrated polarization rotator-splitter/combiner apparatus are described. An integrated polarization rotator-splitter apparatus may include an input waveguide section, a polarization rotator section, a polarization splitter section and an outgoing waveguide section, which can also be reversely connected as a polarization rotator-combiner.
    Type: Grant
    Filed: May 18, 2015
    Date of Patent: May 22, 2018
    Assignee: SIFOTONICS TECHNOLOGIES CO., LTD.
    Inventors: Tuo Shi, Changhua Chen, Yongbo Shao, Dong Pan
  • Patent number: 9954437
    Abstract: One charge pump includes at least one delay element, a number of inverters, and a flip flop coupled in series, with an output of one inverter coupled in a feedback loop to one of the delay elements. The charge pump monitors a first supply voltage level, and turns off an oscillator of the charge pump when the first supply voltage drops below a certain level. This is accomplished in one embodiment by monitoring a first supply voltage level supplied to a charge pump, and turning off an oscillator of the charge pump when the first supply voltage drops below a certain level.
    Type: Grant
    Filed: February 28, 2014
    Date of Patent: April 24, 2018
    Assignee: Micron Technology, Inc.
    Inventors: Ming H. Li, Dong Pan
  • Patent number: 9946029
    Abstract: An optical coupler structure may include a substrate, a waveguide section and an anchored cantilever section. The substrate may include a main body and a sub-pillar structure formed on the main body. The waveguide section may be disposed on the substrate, and may include a core waveguide of a first material surrounded by a cladding layer of a second material. The anchored cantilever section may be disposed on the sub-pillar structure on the substrate, which may be configured to support the cantilever section and separate the cantilever section from the main body of the substrate. The anchored cantilever section may include a multi-stage inverse taper core waveguide and a cladding layer, of the second material, which surrounds the multi-stage inverse taper core waveguide.
    Type: Grant
    Filed: August 5, 2015
    Date of Patent: April 17, 2018
    Assignee: SiFotonics Technologies Co, Ltd.
    Inventors: Tuo Shi, Tzung-I Su, Changhua Chen, Yongbo Shao, Dong Pan
  • Publication number: 20180095486
    Abstract: Systems and apparatuses for a configurable, temperature dependent reference voltage generator are provided. An example apparatus includes control logic configured receive temperature data, and produce a signal, based on the temperature data, indicative of the temperature data, a temperature dependence and a temperature slope. The apparatus may also include a temperature slope reference generator configured to produce a reference voltage having the temperature dependence and the temperature slope, based on the signal from the control logic.
    Type: Application
    Filed: October 3, 2016
    Publication date: April 5, 2018
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Yuanzhong Wan, Dong Pan
  • Patent number: 9933585
    Abstract: A compact and highly efficient coupling structure for coupling between DFB-LD and Si PIC edge coupler with suppressed return loss may include a DFB-LD, a Si PIC comprising at least one input edge coupler and at least one output edge coupler, a silica cover lid disposed on the Si PIC and aligned edge to edge with the Si PIC, a single-mode fiber aligned to the at least one output edge coupler of the Si PIC, a lens disposed between the DFB-LD and the at least one input edge coupler of the Si PIC, and an isolator bonded to a facet of the at least one input edge coupler with a first volume of an index matching fluid. The lens may be configured to minimize a mismatch between an output spot size of the DFB-LD and a spot size of the at least one input edge coupler of the Si PIC.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: April 3, 2018
    Assignee: SIFOTONICS TECHNOLOGIES CO., LTD.
    Inventors: Ning Zhang, Tuo Shi, Yongbo Shao, Tzung-I Su, Dong Pan
  • Patent number: 9926400
    Abstract: Radical polymerization techniques can be used to polymerize monomers that include a class of hydroxyaryl compounds so as to provide polymers that exhibit desirable properties including, but not limited to, reduced hysteresis. Compositions such as vulcanizates in which such polymers can be utilized and products such as tire components that incorporate and/or are manufactured from such compositions also are provided.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: March 27, 2018
    Assignee: Bridgestone Corporation
    Inventors: Yuan-Yong Yan, Zengquan Qin, Xiao-Dong Pan
  • Publication number: 20180079891
    Abstract: Vulcanizates with desirable properties can be obtained from compositions incorporating polymers that include hydroxyl group-containing aryl functionalities, silica or other particulate filler(s) that contain or include oxides of silicon and a group or compound that can act to covalently bond the filler particles and the polymer. The group can be provided as a substituent of the filler particle, or a discreet compound can be provided in the composition.
    Type: Application
    Filed: November 27, 2017
    Publication date: March 22, 2018
    Applicant: Bridgestone Corporation
    Inventors: Yuan-Yong Yan, Zengquan Qin, Xiao-Dong Pan
  • Patent number: 9891451
    Abstract: A ring optical modulator includes a SOI substrate, including at least first and second top silicon layers, and a silicon-based ring resonator formed on the SOI substrate. The silicon-based ring resonator includes first and second top silicon layers, a thin dielectric gate layer disposed between the top silicon layers, first and second electric contacts, and first rib-type waveguide and ring-shape rib-type waveguide formed on the second top silicon layer. The thin dielectric layer includes a first side in contact with the first top silicon layer and a second side in contact with the second top silicon layer. With electric signals applied on the electric contacts, free carriers accumulate, deplete or invert within the top silicon layers on the first and second sides of the thin dielectric gate layer beneath the ring-shape rib-type waveguide, simultaneously, and a refractive index of the ring-shape rib-type waveguide confining optical fields is modulated.
    Type: Grant
    Filed: August 16, 2016
    Date of Patent: February 13, 2018
    Assignee: SIFOTONICS TECHNOLOGIES CO., LTD.
    Inventors: Tuo Shi, Tzung-I Su, Yongbo Shao, Dong Pan
  • Patent number: 9868850
    Abstract: Vulcanizates with desirable properties can be obtained from compositions incorporating polymers that include hydroxyl group-containing aryl functionalities, silica or other particulate filler(s) that contain or include oxides of silicon and a group or compound that can act to covalently bond the filler particles and the polymer. The group can be provided as a substituent of the filler particle, or a discreet compound can be provided in the composition.
    Type: Grant
    Filed: February 16, 2015
    Date of Patent: January 16, 2018
    Assignee: Bridgestone Corporation
    Inventors: Yuan-Yong Yan, Zengquan Qin, Xiao-Dong Pan
  • Publication number: 20180006429
    Abstract: An optical package for providing efficient coupling between a photonic device and a silicon photonic integrated-circuit chip (Si PIC) edge couplers with low return loss, as well as variations thereof, is described. The optical package may include a photonic device, a Si PIC, a single mode fiber or fiber array assembly, a lens and a spacer. The Si PIC may an input edge coupler and an output edge coupler. The single mode fiber or fiber array assembly may be aligned to the output edge coupler. The lens may be disposed between the photonic device and the input edge coupler, and may be configured to minimize a mismatch between an output spot size of the photonic device and a spot size of the input edge coupler of the Si PIC. The spacer may be bonded to a facet of the input edge coupler with an index matching fluid.
    Type: Application
    Filed: September 15, 2017
    Publication date: January 4, 2018
    Inventors: Tuo Shi, Ning Zhang, Yongbo Shao, Tzung-I Su, Dong Pan
  • Publication number: 20170369621
    Abstract: A wax-polymer compound includes (a) a polymer component that is a polymerized unsaturated monomer, optionally copolymerized with a vinyl-aromatic monomer, and (b) a halogenated hydrocarbon wax component. The polymer component is grafted to the halogenated hydrocarbon wax component, and the wax-polymer compound has a number average molecular weight of about 1,000 to about 100,000, A method of making the wax-polymer compound and a coated silica particle are also disclosed. A rubber composition includes a rubber elastomer comprising a polymerized unsaturated monomer and optionally a polymerized vinyl-aromatic monomer, the elastomer having a number average molecular weight of about 100,000 to about 1,000,000. It further includes a filler in an amount of about 5 to about 200 phr, the filler comprising carbon black, silica, or both; and a wax-polymer additive.
    Type: Application
    Filed: December 22, 2015
    Publication date: December 28, 2017
    Applicant: Bridgestone Corporation
    Inventors: Yaohong CHEN, Xiao-Dong PAN, Dennis R. BRUMBAUGH, Edward D. KELLEY
  • Patent number: 9829641
    Abstract: An integrated optical coupling device may include a substrate, a coating layer disposed on the substrate, and a prism disposed on the coating layer. The prism may include a first surface and a second surface. The integrated optical coupling device may also include a first lens disposed on the first surface of the prism, a second lens disposed on the second surface of the prism, and an anti-reflection coating layer disposed on the first lens and the second lens.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: November 28, 2017
    Assignee: SiFotonics Technologies Co, Ltd.
    Inventors: Tuo Shi, Shipeng Yan, Nai Zhang, Dong Pan
  • Patent number: 9787054
    Abstract: An optical package for providing efficient coupling between a distributed feedback laser diode (DFB-LD) and a silicon photonic integrated-circuit chip (Si PIC) edge couplers with low return loss, as well as variations thereof, is described. The optical package may include a DFB-LD, a Si PIC, a single mode fiber or fiber array assembly, a lens and a spacer. The Si PIC may include an input edge coupler and an output edge coupler. The single mode fiber or fiber array assembly may be aligned to the output edge coupler. The lens may be disposed between the DFB-LD and the input edge coupler, and may be configured to minimize a mismatch between an output spot size of the DFB-LD and a spot size of the input edge coupler of the Si PIC. The spacer may be bonded to a facet of the input edge coupler with an index matching fluid.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: October 10, 2017
    Assignee: SiFotonics Technologies Co., Ltd.
    Inventors: Tuo Shi, Ning Zhang, Yongbo Shao, Tzung-I Su, Dong Pan
  • Publication number: 20170288542
    Abstract: According to one embodiment of this disclosure, an apparatus is disclosed. The apparatus includes a voltage regulator configured to produce a regulated voltage, a plurality of current circuits coupled in parallel between an output node and a power node, each of the plurality of current circuits including first and second transistors coupled in series, the first transistor of each of the plurality of current circuits being biased with the regulated voltage, and a control circuit configured to activate the second transistor of selected one or ones of the plurality of current circuits responsive, at least in part, to a voltage at the output node.
    Type: Application
    Filed: March 31, 2016
    Publication date: October 5, 2017
    Applicant: Micron Technology, Inc.
    Inventors: Yuanzhong Wan, Dong Pan
  • Patent number: 9780248
    Abstract: Avalanche photodiodes (APDs) having at least one top stressor layer disposed on a germanium (Ge) absorption layer are described herein. The top stressor layer can increase the tensile strain of the Ge absorption layer, thus extending the absorption of APDs to longer wavelengths beyond 1550 nm. In one embodiment, the top stressor layer has a four-layer structure, including an amorphous silicon (Si) layer disposed on the Ge absorption layer; a first silicon dioxide (SiO2) layer disposed on the amorphous Si layer, a silicon nitride (SiN) layer disposed on the first SiO2 layer, and a second SiO2 layer disposed on the SiN layer. The Ge absorption layer can be further doped by p-type dopants. The doping concentration of p-type dopants is controlled such that a graded doping profile is formed within the Ge absorption layer to decrease the dark currents in APDs.
    Type: Grant
    Filed: June 13, 2014
    Date of Patent: October 3, 2017
    Assignee: SIFOTONICS TECHNOLOGIES CO., LTD.
    Inventors: Mengyuan Huang, Pengfei Cai, Dong Pan, Liangbo Wang, Su Li, Tuo Shi, Tzung I Su, Wang Chen, Ching-yin Hong
  • Publication number: 20170271545
    Abstract: Various embodiments of a compensated photonic device structure and fabrication method thereof are described herein. In one aspect, a photonic device may include a substrate and a functional layer disposed on the substrate. The substrate may be made of a first material and the functional layer may be made of a second material that is different from the first material. The photonic device may also include a compensation region formed at an interface region between the substrate and the functional layer. The compensation region may be doped with compensation dopants such that a first carrier concentration around the interface region of function layer is reduced and a second carrier concentration in a bulk region of functional layer is reduced.
    Type: Application
    Filed: June 2, 2017
    Publication date: September 21, 2017
    Inventors: Mengyuan Huang, Liangbo Wang, Su Li, Tuo Shi, Pengfei Cai, Wang Chen, Ching-yin Hong, Dong Pan