Patents by Inventor Durai Vishak Nirmal Ramaswamy

Durai Vishak Nirmal Ramaswamy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10727336
    Abstract: A ferroelectric field effect transistor comprises a semiconductive channel comprising opposing sidewalls and an elevationally outermost top. A source/drain region is at opposite ends of the channel. A gate construction of the transistor comprises inner dielectric extending along the channel top and laterally along the channel sidewalk. Inner conductive material is elevationally and laterally outward of the inner dielectric and extends along the channel top and laterally along the channel sidewalk. Outer ferroelectric material is elevationally outward of the inner conductive material and extends along the channel top. Outer conductive material is elevationally outward of the outer ferroelectric material and extends along the channel. Other constructions and methods are disclosed.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: July 28, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Durai Vishak Nirmal Ramaswamy, Kirk D. Prall
  • Publication number: 20200234751
    Abstract: Some embodiments include a ferroelectric transistor. The transistor has gate dielectric material configured as a first container, with the first container having a first inner surface. Metal-containing material is configured as a second container nested within said first container. The second container has a second inner surface with an area less than the first inner surface. Ferroelectric material is configured as a third container nested within the second container. The third container has a third inner surface with an area less than the second inner surface. Gate material is within the third container. Some embodiments include memory arrays having ferroelectric transistors as memory cells. Some embodiments include methods of writing/reading relative to memory cells of memory arrays when the memory cells are metal-ferroelectric-metal-insulator-semiconductor (MFMIS) transistors.
    Type: Application
    Filed: April 2, 2020
    Publication date: July 23, 2020
    Applicant: Micron Technology, Inc.
    Inventors: Durai Vishak Nirmal Ramaswamy, Wayne Kinney
  • Publication number: 20200235111
    Abstract: Some embodiments include an integrated assembly having first electrodes with top surfaces, and with sidewall surfaces extending downwardly from the top surfaces. The first electrodes are solid pillars. Insulative material is along the sidewall surfaces of the first electrodes. Second electrodes extend along the sidewall surfaces of the first electrodes and are spaced from the sidewall surfaces by the insulative material. Conductive-plate-material extends across the first and second electrodes, and couples the second electrodes to one another. Leaker-devices electrically couple the first electrodes to the conductive-plate-material and are configured to discharge at least a portion of excess charge from the first electrodes to the conductive-plate-material. Some embodiments include methods of forming integrated assemblies.
    Type: Application
    Filed: January 23, 2019
    Publication date: July 23, 2020
    Applicant: Micron Technology, Inc.
    Inventors: Alessandro Calderoni, Beth R. Cook, Durai Vishak Nirmal Ramaswamy, Ashonita A. Chavan
  • Publication number: 20200227423
    Abstract: Some embodiments include a ferroelectric device comprising ferroelectric material adjacent an electrode. The device includes a semiconductor material-containing region along a surface of the ferroelectric material nearest the electrode. The semiconductor material-containing region has a higher concentration of semiconductor material than a remainder of the ferroelectric material. The device may be, for example, a transistor or a capacitor. The device may be incorporated into a memory array. Some embodiments include a method of forming a ferroelectric capacitor. An oxide-containing ferroelectric material is formed over a first electrode. A second electrode is formed over the oxide-containing ferroelectric material. A semiconductor material-enriched portion of the oxide-containing ferroelectric material is formed adjacent the second electrode.
    Type: Application
    Filed: March 30, 2020
    Publication date: July 16, 2020
    Applicant: Micron Technology, Inc.
    Inventors: Ashonita A. Chavan, Ramanathan Gandhi, Beth R. Cook, Durai Vishak Nirmal Ramaswamy
  • Publication number: 20200220022
    Abstract: A device comprises an array comprising rows and columns of elevationally-extending transistors. An access line interconnects multiple of the elevationally-extending transistors along individual of the rows. The transistors individually comprise an upper source/drain region, a lower source/drain region, and a channel region extending elevationally there-between. The channel region comprises an oxide semiconductor. A transistor gate is operatively laterally-proximate the channel region and comprises a portion of an individual of the access lines. Intra-row-insulating material is longitudinally between immediately-intra-row-adjacent of the elevationally-extending transistors. Inter-row-insulating material is laterally between immediately-adjacent of the rows of the elevationally-extending transistors. At least one of the intra-row-insulating material and the inter-row-insulating material comprises void space. Other embodiments, including method embodiments, are disclosed.
    Type: Application
    Filed: March 20, 2020
    Publication date: July 9, 2020
    Applicant: Micron Technology, Inc.
    Inventors: Scott E. Sills, Kirk D. Prall, Durai Vishak Nirmal Ramaswamy, Ramanathan Gandhi
  • Publication number: 20200219807
    Abstract: An array of memory cells individually comprising a capacitor and a transistor comprises, in a first level, alternating columns of digitlines and conductive shield lines. In a second level above the first level there are rows of transistor wordlines. In a third level above the second level there are rows and columns of capacitors. In a fourth level above the third level there are rows of transistor wordlines. In a fifth level above the fourth level there are alternating columns of digitlines and conductive shield lines. Other embodiments and aspects are disclosed, including method.
    Type: Application
    Filed: March 17, 2020
    Publication date: July 9, 2020
    Applicant: Micron Technology, Inc.
    Inventor: Durai Vishak Nirmal Ramaswamy
  • Patent number: 10706906
    Abstract: Methods, systems, and devices for memory array operation are described. A series of pulses may be applied to a fatigued memory cell to improve performance of memory cell. For example, a ferroelectric memory cell may enter a fatigue state after a number of access operations are performed at an access rate. After the number of access operations have been performed at the access rate, a fatigue state of the ferroelectric memory cell may be identified and the series of pulses may be applied to the ferroelectric capacitor at a different (e.g., higher) rate. For instance, a delay between pulses of the series of pulses may be shorter than the delay between access operations of the ferroelectric memory cell.
    Type: Grant
    Filed: July 24, 2018
    Date of Patent: July 7, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Alessandro Calderoni, Durai Vishak Nirmal Ramaswamy
  • Patent number: 10707212
    Abstract: A method of forming an apparatus comprises forming a first metal nitride material over an upper surface of a conductive material within an opening extending through at least one dielectric material through a non-conformal deposition process. A second metal nitride material is formed over an upper surface of the first metal nitride material and side surfaces of the at least one dielectric material partially defining boundaries of the opening through a conformal deposition process. A conductive structure is formed over surfaces of the second metal nitride material within the opening. Apparatuses and electronic systems are also described.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: July 7, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Kentaro Ishii, Yongjun J. Hu, Amirhasan Nourbakhsh, Durai Vishak Nirmal Ramaswamy, Christopher W. Petz, Luca Fumagalli
  • Publication number: 20200212051
    Abstract: Some embodiments include apparatuses and methods of forming the apparatuses. One of the apparatuses includes a memory cell and first, second, and third data lines located over a substrate. The memory cell includes a first transistor and a second transistor. The first transistor includes a charge storage structure located on a first level of the apparatus, and a first channel region electrically separated from the charge storage structure. The second transistor includes a second channel region located on a second level of the apparatus and electrically coupled to the charge storage structure. The first and second data lines are located on a third level of the apparatus and electrically coupled to the first channel region. The first level is between the substrate and the third level. The third data line is electrically coupled to the second channel region and electrically separated from the first channel region.
    Type: Application
    Filed: December 23, 2019
    Publication date: July 2, 2020
    Inventors: Kamal M. Karda, Karthik Sarpatwari, Durai Vishak Nirmal Ramaswamy, Haitao Liu
  • Publication number: 20200211629
    Abstract: Some embodiments include apparatuses and methods of forming the apparatuses. One of the apparatuses includes multiple two-transistor (2T) memory cells. Each of the multiple 2T memory cells includes: a p-channel field effect transistor (PFET) including a charge storage node and a read channel portion, an n-channel field effect transistor (NFET) including a write channel portion that is directly coupled to the charge storage node of the PFET; a single bit line pair coupled to the read channel portion of the PFET; and a single access line overlapping at least part of each of the read channel portion and the write channel portion.
    Type: Application
    Filed: December 20, 2019
    Publication date: July 2, 2020
    Inventors: Kamal M. Karda, Haitao Liu, Karthik Sarpatwari, Durai Vishak Nirmal Ramaswamy
  • Publication number: 20200211631
    Abstract: Some embodiments include apparatuses and methods of forming the apparatuses. One of the apparatuses includes multiple levels of two-transistor (2T) memory cells vertically arranged above a substrate. Each 2T memory cell includes a charge storage transistor having a gate, a write transistor having a gate, a vertically extending access line, and a single bit line pair. The source or drain region of the write transistor is directly coupled to a charge storage structure of the charge storage transistor. The vertically extending access line is coupled to gates of both the charge storage transistor and the write transistor of 2T memory cells in multiple respective levels of the multiple vertically arranged levels. The vertically extending access line and the single bit line pair are used for both write operations and read operations of each of the 2T memory cells to which they are coupled.
    Type: Application
    Filed: December 23, 2019
    Publication date: July 2, 2020
    Inventors: Kamal M. Karda, Haitao Liu, Karthik Sarpatwari, Durai Vishak Nirmal Ramaswamy
  • Publication number: 20200211615
    Abstract: Some embodiments include apparatuses and methods operating the apparatuses. One of the apparatuses includes a first data line located over a substrate, a second data line located over the first data line, a third data line located over the second data line and electrically separated from the first and second data lines, and a memory cell coupled to the first, second, and third data lines. The memory cell includes a first material between the first and second data lines and electrically coupled to the first and second data lines; a second material located over the first data line and the first material, the second material electrically separated from the first material and electrically coupled to the third data line; and a memory element electrically coupled to the second material and electrically separated from the first material and first and second data lines.
    Type: Application
    Filed: December 23, 2019
    Publication date: July 2, 2020
    Inventors: Karthik Sarpatwari, Kamal M. Karda, Durai Vishak Nirmal Ramaswamy
  • Publication number: 20200212045
    Abstract: Some embodiments include apparatuses and methods of forming the apparatus. One of the apparatuses and methods includes a memory cell having a first transistor and a second transistor located over a substrate. The first transistor includes a channel region. The second transistor includes a channel region located over the channel region of the first transistor and electrically separated from the first channel region. The memory cell includes a memory element located on at least one side of the channel region of the first transistor. The memory element is electrically separated from the channel region of the first transistor, and electrically coupled to the channel of the second transistor.
    Type: Application
    Filed: December 19, 2019
    Publication date: July 2, 2020
    Inventors: Kamal M. Karda, Srinivas Pulugurtha, Haitao Liu, Karthik Sarpatwari, Durai Vishak Nirmal Ramaswamy
  • Publication number: 20200212050
    Abstract: Some embodiments include apparatuses and methods of forming the apparatuses. One of the apparatuses includes a memory cell, first, second, and third data lines, and first and second access lines. Each of the first, second, and third data lines includes a length extending in a first direction. Each of the first and second access lines includes a length extending in a second direction. The memory cell includes a first transistor including a charge storage structure, and a first channel region electrically separated from the charge storage structure, and a second transistor including a second channel region electrically coupled to the charge storage structure. The first data line is electrically coupled to the first channel region. The second data line is electrically coupled to the first channel region. The third data line is electrically coupled to the second channel region, the second channel region being between the charge storage structure and the third data line.
    Type: Application
    Filed: December 20, 2019
    Publication date: July 2, 2020
    Inventors: Srinivas Pulugurtha, Durai Vishak Nirmal Ramaswamy
  • Publication number: 20200211602
    Abstract: Some embodiments include apparatuses and methods of forming the apparatuses. One of the apparatuses includes a first data line, a second data line, a conductive line, and a memory cell coupled to the first and second data lines. The memory cell includes a first transistor and a second transistor. The first transistor includes a first region electrically coupled to the first and second data lines, and charge storage structure electrically separated from the first region. The second transistor includes a second region electrically separated from the first region, the second region electrically coupled to the charge storage structure and the second data line. The conductive line is electrically separated from the first and second channel regions. Part of the conductive line is spanning across part of the first region of the first transistor and part of the second region of the second transistor.
    Type: Application
    Filed: December 23, 2019
    Publication date: July 2, 2020
    Inventors: Kamal M. Karda, Haitao Liu, Karthik Sarpatwari, Durai Vishak Nirmal Ramaswamy
  • Publication number: 20200212046
    Abstract: A method of forming an apparatus comprises forming a first metal nitride material over an upper surface of a conductive material within an opening extending through at least one dielectric material through a non-conformal deposition process. A second metal nitride material is formed over an upper surface of the first metal nitride material and side surfaces of the at least one dielectric material partially defining boundaries of the opening through a conformal deposition process. A conductive structure is formed over surfaces of the second metal nitride material within the opening. Apparatuses and electronic systems are also described.
    Type: Application
    Filed: December 28, 2018
    Publication date: July 2, 2020
    Inventors: Kentaro Ishii, Yongjun J. Hu, Amirhasan Nourbakhsh, Durai Vishak Nirmal Ramaswamy, Christopher W. Petz, Luca Fumagalli
  • Publication number: 20200203360
    Abstract: Methods and devices are disclosed, such as those involving memory cell devices with improved charge retention characteristics. In one or more embodiments, a memory cell is provided having an active area defined by sidewalls of neighboring trenches. A layer of dielectric material is blanket deposited over the memory cell, and etched to form spacers on sidewalls of the active area. Dielectric material is formed over the active area, a charge trapping structure is formed over the dielectric material over the active area, and a control gate is formed over the charge trapping structure. In some embodiments, the charge trapping structure includes nanodots. In some embodiments, the width of the spacers is between about 130% and about 170% of the thickness of the dielectric material separating the charge trapping material and an upper surface of the active area.
    Type: Application
    Filed: February 27, 2020
    Publication date: June 25, 2020
    Applicant: Micron Technology, Inc.
    Inventors: Ronald A. Weimer, Kyu S. Min, Thomas M. Graettinger, Durai Vishak Nirmal Ramaswamy
  • Publication number: 20200203357
    Abstract: A method of forming an array of capacitors comprises forming a plurality of horizontally-spaced groups that individually comprise a plurality of horizontally-spaced lower capacitor electrodes having a capacitor insulator thereover. Adjacent of the groups are horizontally spaced farther apart than are adjacent of the lower capacitor electrodes within the groups. A void space is between the adjacent groups. An upper capacitor electrode material is formed in the void space and in the groups over the capacitor insulator and the lower capacitor electrodes. The upper capacitor electrode material in the void space connects the upper capacitor electrode material that is in the adjacent groups relative to one another. The upper capacitor electrode material less-than-fills the void space. At least a portion of the upper capacitor electrode material is removed from the void space to disconnect the upper capacitor electrode material in the adjacent groups from being connected relative to one another.
    Type: Application
    Filed: December 19, 2018
    Publication date: June 25, 2020
    Applicant: Micron Technology, Inc.
    Inventors: Sameer Chhajed, Ashonita A. Chavan, Mark Fischer, Durai Vishak Nirmal Ramaswamy
  • Patent number: 10676722
    Abstract: A method of forming a tier of an array of memory cells within an array area, the memory cells individually comprising a capacitor and an elevationally-extending transistor, the method comprising using two, and only two, sacrificial masking steps within the array area of the tier in forming the memory cells. Other methods are disclosed, as are structures independent of method of fabrication.
    Type: Grant
    Filed: September 25, 2019
    Date of Patent: June 9, 2020
    Assignee: Micron Technology, Inc.
    Inventor: Durai Vishak Nirmal Ramaswamy
  • Patent number: 10680057
    Abstract: A memory cell comprises a capacitor having a first conductive capacitor electrode having laterally-spaced walls that individually have a top surface. A second conductive capacitor electrode is laterally between the walls of the first capacitor electrode, and comprises a portion above the first capacitor electrode. Ferroelectric material is laterally between the walls of the first capacitor electrode and laterally between the second capacitor electrode and the first capacitor electrode. The capacitor comprises an intrinsic current leakage path from one of the first and second capacitor electrodes to the other through the ferroelectric material. A parallel current leakage path is between an elevationally-inner surface of the portion of the second capacitor electrode that is above the first capacitor electrode and at least one of the individual top surfaces of the laterally-spaced walls of the first capacitor electrode.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: June 9, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Muralikrishnan Balakrishnan, Beth R. Cook, Durai Vishak Nirmal Ramaswamy