Patents by Inventor Durai Vishak Nirmal Ramaswamy

Durai Vishak Nirmal Ramaswamy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210066502
    Abstract: Some embodiments include a ferroelectric transistor having a first electrode and a second electrode. The second electrode is offset from the first electrode by an active region. A transistor gate is along a portion of the active region. The active region includes a first source/drain region adjacent the first electrode, a second source/drain region adjacent the second electrode, and a body region between the first and second source/drain regions. The body region includes a gated channel region adjacent the transistor gate. The active region includes at least one barrier between the second electrode and the gated channel region which is permeable to electrons but not to holes. Ferroelectric material is between the transistor gate and the gated channel region.
    Type: Application
    Filed: August 3, 2020
    Publication date: March 4, 2021
    Applicant: Micron Technology, Inc.
    Inventors: Kamal M. Karda, Haitao Liu, Durai Vishak Nirmal Ramaswamy
  • Publication number: 20210066300
    Abstract: Some embodiments include apparatuses and methods of forming the apparatuses. One of the apparatuses includes a first data line located in a first level of the apparatus; a second data line located in a second level of the apparatus; a first memory cell located in a third level of the apparatus between the first and second levels, the first memory cell including a first transistor coupled to the first data line, and a second transistor coupled between the first data line and a charge storage structure of the first transistor; and a second memory cell located in a fourth level of the apparatus between the first and second levels, the second memory cell including a third transistor coupled to the second data line, and a fourth transistor coupled between the second data line and a charge storage structure of the third transistor, the first transistor coupled in series with the third transistor between the first and second data lines.
    Type: Application
    Filed: August 26, 2020
    Publication date: March 4, 2021
    Inventors: Karthik Sarpatwari, Kamal M. Karda, Durai Vishak Nirmal Ramaswamy, Haitao Liu
  • Publication number: 20210066196
    Abstract: Some embodiments include apparatuses and methods of forming the apparatuses. One of the apparatuses includes a data line, a memory cell coupled to the data line, a ground connection, and a conductive line. The memory cell includes a first transistor and a second transistor. The first transistor includes a first region electrically coupled to the data line, and a charge storage structure electrically separated from the first region. The second transistor includes a second region electrically coupled to the charge storage structure and the data line. The ground connection is coupled to the first region of the first transistor. The conductive line is electrically separated from the first and second regions and spans across part of the first region of the first transistor and part of the second region of the second transistor and forming a gate of the first and second transistors.
    Type: Application
    Filed: August 26, 2020
    Publication date: March 4, 2021
    Inventors: Kamal M. Karda, Karthik Sarpatwari, Haitao Liu, Durai Vishak Nirmal Ramaswamy
  • Patent number: 10937911
    Abstract: A transistor comprises a pair of source/drain regions having a channel there-between. A transistor gate construction is operatively proximate the channel. The channel comprises Si1-yGey, where “y” is from 0 to 0.6. At least a portion of each of the source/drain regions comprises Si1-xGex, where “x” is from 0.5 to 1. Other embodiments, including methods, are disclosed.
    Type: Grant
    Filed: July 1, 2020
    Date of Patent: March 2, 2021
    Assignee: Micron Technology, Inc.
    Inventor: Durai Vishak Nirmal Ramaswamy
  • Patent number: 10923658
    Abstract: Some embodiments include a method of forming a memory cell. A first portion of a switching region is formed over a first electrode. A second portion of the switching region is formed over the first portion using atomic layer deposition. The second portion is a different composition than the first portion. An ion source region is formed over the switching region. A second electrode is formed over the ion source region. Some embodiments include a memory cell having a switching region between a pair of electrodes. The switching region is configured to be reversibly transitioned between a low resistive state and a high resistive state. The switching region includes two or more discrete portions, with one of the portions not having a non-oxygen component in common with any composition directly against it in the high resistive state.
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: February 16, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Shuichiro Yasuda, Noel Rocklein, Scott E. Sills, Durai Vishak Nirmal Ramaswamy, Qian Tao
  • Patent number: 10923657
    Abstract: A memory cell comprising a threshold switching material over a first electrode on a substrate. The memory cell includes a second electrode over the threshold switching material and at least one dielectric material between the threshold switching material and at least one of the first electrode and the second electrode. A memory material overlies the second electrode. The dielectric material may directly contact the threshold switching material and each of the first electrode and the second electrode. Memory cells including only one dielectric material between the threshold switching material and an electrode are disclosed. A memory device including the memory cells and methods of forming the memory cells are also described.
    Type: Grant
    Filed: July 24, 2019
    Date of Patent: February 16, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Tsz W. Chan, Durai Vishak Nirmal Ramaswamy, Qian Tao, Yongjun Jeff Hu, Everett A. McTeer
  • Patent number: 10903122
    Abstract: A method of forming an array comprising pairs of vertically opposed capacitors comprises forming a conductive lining in individual capacitor openings in insulative-comprising material. An elevational mid-portion of individual of the conductive linings is removed to form an upper capacitor electrode lining and a lower capacitor electrode lining that are elevationally separate and spaced from one another in the individual capacitor openings. A capacitor insulator is formed laterally inward of the upper and lower capacitor electrode linings in the individual capacitor openings. Conductive material is formed laterally inward of the capacitor insulator in the individual capacitor openings and elevationally between the capacitor electrode linings. The conductive material is formed to comprise a shared capacitor electrode that is shared by vertically opposed capacitors in individual of the pairs of vertically opposed capacitors. Additional methods and structure independent of method are disclosed.
    Type: Grant
    Filed: June 14, 2018
    Date of Patent: January 26, 2021
    Assignee: Micron Technology, Inc.
    Inventor: Durai Vishak Nirmal Ramaswamy
  • Patent number: 10903218
    Abstract: Some embodiments include an integrated assembly having first electrodes with top surfaces, and with sidewall surfaces extending downwardly from the top surfaces. The first electrodes are solid pillars. Insulative material is along the sidewall surfaces of the first electrodes. Second electrodes extend along the sidewall surfaces of the first electrodes and are spaced from the sidewall surfaces by the insulative material. Conductive-plate-material extends across the first and second electrodes, and couples the second electrodes to one another. Leaker-devices electrically couple the first electrodes to the conductive-plate-material and are configured to discharge at least a portion of excess charge from the first electrodes to the conductive-plate-material. Some embodiments include methods of forming integrated assemblies.
    Type: Grant
    Filed: June 23, 2020
    Date of Patent: January 26, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Alessandro Calderoni, Beth R. Cook, Durai Vishak Nirmal Ramaswamy, Ashonita A. Chavan
  • Publication number: 20210012824
    Abstract: A memory cell comprises a capacitor comprising a first capacitor electrode having laterally-spaced walls, a second capacitor electrode comprising a portion above the first capacitor electrode, and capacitor insulator material between the second capacitor electrode and the first capacitor electrode. The capacitor comprises an intrinsic current leakage path from one of the first and second capacitor electrodes to the other through the capacitor insulator material. A parallel current leakage path is between the second capacitor electrode and the first capacitor electrode. The parallel current leakage path is circuit-parallel with the intrinsic current leakage path, of lower total resistance than the intrinsic current leakage path, and comprises leaker material that is everywhere laterally-outward of laterally-innermost surfaces of the laterally-spaced walls of the first capacitor electrode. Other embodiments, including methods, are disclosed.
    Type: Application
    Filed: July 10, 2019
    Publication date: January 14, 2021
    Applicant: Micron Technology, Inc.
    Inventors: Michael Mutch, Ashonita A. Chavan, Sameer Chhajed, Beth R. Cook, Kamal Kumar Muthukrishnan, Durai Vishak Nirmal Ramaswamy, Lance Williamson
  • Patent number: 10892264
    Abstract: Some embodiments include apparatuses and methods of forming the apparatuses. One of the apparatuses includes a memory cell, first, second, and third data lines, and first and second access lines. Each of the first, second, and third data lines includes a length extending in a first direction. Each of the first and second access lines includes a length extending in a second direction. The memory cell includes a first transistor including a charge storage structure, and a first channel region electrically separated from the charge storage structure, and a second transistor including a second channel region electrically coupled to the charge storage structure. The first data line is electrically coupled to the first channel region. The second data line is electrically coupled to the first channel region. The third data line is electrically coupled to the second channel region, the second channel region being between the charge storage structure and the third data line.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: January 12, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Srinivas Pulugurtha, Durai Vishak Nirmal Ramaswamy
  • Publication number: 20210005451
    Abstract: A method includes forming a first amorphous material, forming a second amorphous material over and in contact with the first material, removing a portion of the second material and the first material to form pillars, and exposing the materials to a temperature between a crystallization temperature of the first material and a crystallization temperature of the second material. The first material and the second material each comprise at least one element selected from the group consisting of silicon and germanium. The second material exhibits a crystallization temperature different than a crystallization temperature of the first material. Semiconductor structures, memory devices, and systems are also disclosed.
    Type: Application
    Filed: September 21, 2020
    Publication date: January 7, 2021
    Inventors: Ashonita A. Chavan, Durai Vishak Nirmal Ramaswamy, Michael Mutch, Sameer Chhajed
  • Patent number: 10879344
    Abstract: A memory cell comprises a capacitor having a first conductive capacitor electrode having laterally-spaced walls that individually have a top surface. A second conductive capacitor electrode is laterally between the walls of the first capacitor electrode, and comprises a portion above the first capacitor electrode. Ferroelectric material is laterally between the walls of the first capacitor electrode and laterally between the second capacitor electrode and the first capacitor electrode. The capacitor comprises an intrinsic current leakage path from one of the first and second capacitor electrodes to the other through the ferroelectric material. A parallel current leakage path is between an elevationally-inner surface of the portion of the second capacitor electrode that is above the first capacitor electrode and at least one of the individual top surfaces of the laterally-spaced walls of the first capacitor electrode.
    Type: Grant
    Filed: May 15, 2020
    Date of Patent: December 29, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Muralikrishnan Balakrishnan, Beth R. Cook, Durai Vishak Nirmal Ramaswamy
  • Publication number: 20200395437
    Abstract: A method of forming an array of capacitors comprises forming elevationally-extending and longitudinally-elongated capacitor electrode lines over a substrate. Individual of the capacitor electrode lines are common to and a shared one of two capacitor electrodes of individual capacitors longitudinally along a line of capacitors being formed. A capacitor insulator is formed over a pair of laterally-opposing sides of and longitudinally along individual of the capacitor electrode lines. An elevationally-extending conductive line is formed over the capacitor insulator longitudinally along one of the laterally-opposing sides of the individual capacitor electrode lines. The conductive line is cut laterally through to form spaced individual other of the two capacitor electrodes of the individual capacitors. Other methods are disclosed, including structures independent of method of manufacture.
    Type: Application
    Filed: July 17, 2020
    Publication date: December 17, 2020
    Applicant: Micron Technology, Inc.
    Inventor: Durai Vishak Nirmal Ramaswamy
  • Publication number: 20200395292
    Abstract: An array of memory cells individually comprising a capacitor and a transistor comprises, in a first level, alternating columns of digitlines and conductive shield lines. In a second level above the first level there are rows of transistor wordlines. In a third level above the second level there are rows and columns of capacitors. In a fourth level above the third level there are rows of transistor wordlines. In a fifth level above the fourth level there are alternating columns of digitlines and conductive shield lines. Other embodiments and aspects are disclosed, including method.
    Type: Application
    Filed: August 26, 2020
    Publication date: December 17, 2020
    Applicant: Micron Technology, Inc.
    Inventor: Durai Vishak Nirmal Ramaswamy
  • Publication number: 20200395368
    Abstract: Various embodiments comprise apparatuses and methods of forming the apparatuses. In one embodiment, an exemplary apparatus includes a plurality of memory cells. At least a portion of the memory cells have a bottom electrode with each bottom electrode being at least partially electrically isolated from remaining ones of the bottom electrodes. At least one resistive interconnect electrically couples two or more of the bottom electrodes. The resistive interconnect is arranged to discharge at least a portion of excess charge from the two or more bottom electrodes. Additional apparatuses and methods of forming the apparatuses are disclosed.
    Type: Application
    Filed: August 31, 2020
    Publication date: December 17, 2020
    Inventor: Durai Vishak Nirmal Ramaswamy
  • Patent number: 10868194
    Abstract: A transistor comprises a pair of source/drain regions having a channel region there-between. A transistor gate construction is operatively proximate the channel region. The channel region comprises a direction of current flow there-through between the pair of source/drain regions. The channel region comprises at least one of GaP, GaN, and GaAs extending all along the current-flow direction. Each of the source/drain regions comprises at least one of GaP, GaN, and GaAs extending completely through the respective source/drain region orthogonal to the current-flow direction. The at least one of the GaP, the GaN, and the GaAs of the respective source/drain region is directly against the at least one of the GaP, the GaN, and the GaAs of the channel region. Each of the source/drain regions comprises at least one of elemental silicon and metal material extending completely through the respective source/drain region orthogonal to the current-flow direction. Other embodiments are disclosed.
    Type: Grant
    Filed: May 8, 2019
    Date of Patent: December 15, 2020
    Assignee: Micron Technology, Inc.
    Inventor: Durai Vishak Nirmal Ramaswamy
  • Publication number: 20200388617
    Abstract: A memory array comprises vertically-alternating tiers of insulative material and memory cells. The memory cells individually comprise a transistor and a capacitor. The capacitor comprises a first electrode electrically coupled to a source/drain region of the transistor. The first electrode comprises an annulus in a straight-line horizontal cross-section and a capacitor insulator radially inward of the first electrode annulus. A second electrode is radially inward of the capacitor insulator. A capacitor-electrode structure extends elevationally through the vertically-alternating tiers. Individual of the second electrodes of individual of the capacitors are electrically coupled to the elevationally-extending capacitor-electrode structure. A sense line is electrically coupled to another source/drain region of multiple of the transistors that are in different memory-cell tiers. Additional embodiments and aspects are disclosed, including methods.
    Type: Application
    Filed: August 25, 2020
    Publication date: December 10, 2020
    Applicant: Micron Technology, Inc.
    Inventor: Durai Vishak Nirmal Ramaswamy
  • Publication number: 20200381290
    Abstract: Some embodiments include an integrated memory having an array of capacitors. The array has edges. The capacitors along the edges are edge capacitors, and the other capacitors are internal capacitors. The edge capacitors have inner edges facing toward the internal capacitors, and have outer edges in opposing relation to the inner edges. An insulative beam extends laterally between the capacitors. The insulative beam is along upper regions of the capacitors. First void regions are under the insulative beam, along lower regions of the internal capacitors, and along the inner edges of the edge capacitors. Peripheral extensions of the insulative beam extend laterally outward of the edge capacitors, and second void regions are under the peripheral extensions and along the outer edges of the edge capacitors. Some embodiments included integrated assemblies having two or more memory array decks stacked on atop another. Some embodiments include methods of forming memory arrays.
    Type: Application
    Filed: August 17, 2020
    Publication date: December 3, 2020
    Applicant: Micron Technology, Inc.
    Inventor: Durai Vishak Nirmal Ramaswamy
  • Publication number: 20200373314
    Abstract: A method used in forming an electronic component comprising conductive material and ferroelectric material comprises forming a non-ferroelectric metal oxide-comprising insulator material over a substrate. A composite stack comprising at least two different composition non-ferroelectric metal oxides is formed over the substrate. The composite stack has an overall conductivity of at least 1×102 Siemens/cm. The composite stack is used to render the non-ferroelectric metal oxide-comprising insulator material to be ferroelectric. Conductive material is formed over the composite stack and the insulator material. Ferroelectric capacitors and ferroelectric field effect transistors independent of method of manufacture are also disclosed.
    Type: Application
    Filed: August 10, 2020
    Publication date: November 26, 2020
    Applicant: Micron Technology, Inc.
    Inventors: Ashonita A. Chavan, Durai Vishak Nirmal Ramaswamy, Manuj Nahar
  • Publication number: 20200365800
    Abstract: An array of cross point memory cells comprises spaced first lines which cross spaced second lines. Two memory cells are individually between one of two immediately adjacent of the second lines and a same single one of the first lines.
    Type: Application
    Filed: July 16, 2020
    Publication date: November 19, 2020
    Applicant: Micron Technology, Inc.
    Inventors: Scott E. Sills, Durai Vishak Nirmal Ramaswamy, Alessandro Calderoni