Patents by Inventor Eiichi Funatsu

Eiichi Funatsu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190174083
    Abstract: A solid-state imaging device is capable of simplifying the pixel structure to reduce the pixel size and capable of suppressing the variation in the characteristics between the pixels when a plurality of output systems is provided. A unit cell includes two pixels. Upper and lower photoelectric converters and, transfer transistors and connected to the upper and lower photoelectric converters, respectively, a reset transistor, and an amplifying transistor form the two pixels. A full-face signal line is connected to the respective drains of the reset transistor and the amplifying transistor. Controlling the full-face signal line, along with transfer signal lines and a reset signal line, to read out signals realizes the simplification of the wiring in the pixel, the reduction of the pixel size, and so on.
    Type: Application
    Filed: November 27, 2018
    Publication date: June 6, 2019
    Inventors: Takashi Abe, Nobuo Nakamura, Tomoyuki Umeda, Keiji Mabuchi, Hiroaki Fujita, Eiichi Funatsu, Hiroki Sato
  • Patent number: 10263033
    Abstract: Forming a back-illuminated type CMOS image sensor, includes process for formation of a registration mark on the wiring side of a silicon substrate during formation of an active region or a gate electrode. A silicide film using an active region may also be used for the registration mark. Thereafter, the registration mark is read from the back-side by use of red light or near infrared rays, and registration of the stepper is accomplished. It is also possible to form a registration mark in a silicon oxide film on the back-side (illuminated side) in registry with the registration mark on the wiring side, and to achieve the desired registration by use of the registration mark thus formed.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: April 16, 2019
    Assignee: Sony Corporation
    Inventors: Takashi Abe, Nobuo Nakamura, Keiji Mabuchi, Tomoyuki Umeda, Hiroaki Fujita, Eiichi Funatsu, Hiroki Sato
  • Patent number: 10165212
    Abstract: A solid-state imaging device is capable of simplifying the pixel structure to reduce the pixel size and capable of suppressing the variation in the characteristics between the pixels when a plurality of output systems is provided. A unit cell includes two pixels. Upper and lower photoelectric converters and, transfer transistors and connected to the upper and lower photoelectric converters, respectively, a reset transistor, and an amplifying transistor form the two pixels. A full-face signal line is connected to the respective drains of the reset transistor and the amplifying transistor. Controlling the full-face signal line, along with transfer signal lines and a reset signal line, to read out signals realizes the simplification of the wiring in the pixel, the reduction of the pixel size, and so on.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: December 25, 2018
    Assignee: Sony Corporation
    Inventors: Takashi Abe, Nobuo Nakamura, Tomoyuki Umeda, Keiji Mabuchi, Hiroaki Fujita, Eiichi Funatsu, Hiroki Sato
  • Publication number: 20180359431
    Abstract: An image sensor system, comprising a pixel array that includes at least a first type pixel and a second type pixel, wherein each first type pixel is configured to sense light of a first optical spectral range; and each second pixel is configured to sense light of a second optical spectral range; an optical filter located above the pixel array, said optical filter configured to pass a third optical spectral range and a fourth optical spectral range that is different from the third optical spectral range, wherein the fourth optical spectral range is less than the second optical spectral range; a light source that emits light in a fifth optical spectral range, wherein the fifth optical spectral range at least overlaps with the fourth optical spectral range; and a controller that controls the image sensor system to selectively operate in a first mode that uses said first optical spectral range, and a second mode that uses said second optical spectral range.
    Type: Application
    Filed: June 12, 2017
    Publication date: December 13, 2018
    Inventors: Chen-Wei Lu, Ping-Hsu Chen, Yin Qian, Eiichi Funatsu
  • Patent number: 10015388
    Abstract: A method of focusing an image sensor includes scanning a first portion of an image frame from an image sensor a first time at a first rate to produce first focus data. A second portion of the image frame from the image sensor is scanned at a second rate to read image data from the second portion. The first rate is greater than the second rate. The first portion of the image frame is scanned a second time at the first rate to produce second focus data. The first focus data and the second focus data are compared, and the focus of a lens is adjusted in response to the comparison of the first focus data and the second focus data.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: July 3, 2018
    Assignee: OmniVision Technologies, Inc.
    Inventors: Tiejun Dai, Eiichi Funatsu, Donghui Wu, Zheng Yang, Xiao Xie
  • Publication number: 20180124372
    Abstract: An active depth imaging system and method of operating the same captures illuminator-on and illuminator-off image data with each of a first and second imager. The illuminator-on image data includes information representing an imaged scene and light emitted from an illuminator and reflected off of objects within the imaged scene. The illuminator-off image data includes information representing the imaged scene without the light emitted from the illuminator. For each image set captured by the first and second imagers, illuminator-off image data is subtracted from the illuminator-on image data to identify the illuminated light within the scene. The depth of an object at which the light is incident on then is determined by the subtracted image data of the first and second imagers.
    Type: Application
    Filed: November 2, 2016
    Publication date: May 3, 2018
    Inventors: Zheng Yang, Eiichi Funatsu, Sohei Manabe, Keiji Mabuchi, Dajiang Yang, Duli Mao, Bowei Zhang
  • Publication number: 20180122849
    Abstract: Forming a back-illuminated type CMOS image sensor, includes process for formation of a registration mark on the wiring side of a silicon substrate during formation of an active region or a gate electrode. A silicide film using an active region may also be used for the registration mark. Thereafter, the registration mark is read from the back-side by use of red light or near infrared rays, and registration of the stepper is accomplished. It is also possible to form a registration mark in a silicon oxide film on the back-side (illuminated side) in registry with the registration mark on the wiring side, and to achieve the desired registration by use of the registration mark thus formed.
    Type: Application
    Filed: December 29, 2017
    Publication date: May 3, 2018
    Inventors: Takashi Abe, Nobuo Nakamura, Keiji Mabuchi, Tomoyuki Umeda, Hiroaki Fujita, Eiichi Funatsu, Hiroki Sato
  • Publication number: 20180041725
    Abstract: A solid-state imaging device is capable of simplifying the pixel structure to reduce the pixel size and capable of suppressing the variation in the characteristics between the pixels when a plurality of output systems is provided. A unit cell includes two pixels. Upper and lower photoelectric converters and, transfer transistors and connected to the upper and lower photoelectric converters, respectively, a reset transistor, and an amplifying transistor form the two pixels. A full-face signal line is connected to the respective drains of the reset transistor and the amplifying transistor. Controlling the full-face signal line, along with transfer signal lines and a reset signal line, to read out signals realizes the simplification of the wiring in the pixel, the reduction of the pixel size, and so on.
    Type: Application
    Filed: August 17, 2017
    Publication date: February 8, 2018
    Inventors: Takashi Abe, Nobuo Nakamura, Tomoyuki Umeda, Keiji Mabuchi, Hiroaki Fujita, Eiichi Funatsu, Hiroki Sato
  • Patent number: 9859324
    Abstract: Forming a back-illuminated type CMOS image sensor, includes process for formation of a registration mark on the wiring side of a silicon substrate during formation of an active region or a gate electrode. A silicide film using an acitve region may also be used for the registration mark. Thereafter, the registration mark is read from the back-side by use of red light or near infrared rays, and registration of the stepper is accomplished. It is also possible to form a registration mark in a silicon oxide film on the back-side (illuminated side) in registry with the registration mark on the wiring side, and to achieve the desired registration by use of the registration mark thus formed.
    Type: Grant
    Filed: August 1, 2016
    Date of Patent: January 2, 2018
    Assignee: Sony Corporation
    Inventors: Takashi Abe, Nobuo Nakamura, Keiji Mabuchi, Tomoyuki Umeda, Hiroaki Fujita, Eiichi Funatsu, Hiroki Sato
  • Patent number: 9860471
    Abstract: A CMOS sensor has unit pixels each structured by a light receiving element and three transistors, to prevent against the phenomenon of saturation shading and the reduction of dynamic range. The transition time (fall time), in switching off the voltage on a drain line shared in all pixels, is given longer than the transition time in turning of any of the reset line and the transfer line. For this reason, the transistor constituting a DRN drive buffer is made proper in its W/L ratio. Meanwhile, a control resistance or current source is inserted on a line to the GND, to make proper the operation current during driving. This reduces saturation shading amount. By making a reset transistor in a depression type, the leak current to a floating diffusion is suppressed to broaden the dynamic range.
    Type: Grant
    Filed: October 28, 2015
    Date of Patent: January 2, 2018
    Assignee: Sony Corporation
    Inventors: Keiji Mabuchi, Eiichi Funatsu, Kasai Masanori
  • Patent number: 9832405
    Abstract: A solid-state imaging device is capable of simplifying the pixel structure to reduce the pixel size and capable of suppressing the variation in the characteristics between the pixels when a plurality of output systems is provided. A unit cell includes two pixels. Upper and lower photoelectric converters and, transfer transistors and connected to the upper and lower photoelectric converters, respectively, a reset transistor, and an amplifying transistor form the two pixels. A full-face signal line is connected to the respective drains of the reset transistor and the amplifying transistor. Controlling the full-face signal line, along with transfer signal lines and a reset signal line, to read out signals realizes the simplification of the wiring in the pixel, the reduction of the pixel size, and so on.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: November 28, 2017
    Assignee: Sony Corporation
    Inventors: Takashi Abe, Nobuo Nakamura, Tomoyuki Umeda, Keiji Mabuchi, Hiroaki Fujita, Eiichi Funatsu, Hiroki Sato
  • Patent number: 9712765
    Abstract: A solid-state image pickup device includes a pixel unit in which a plurality of photoelectric conversion elements having different sensitivities are arranged; and a pixel reading unit configured to read and add output signals from the plurality of photoelectric conversion elements in the pixel unit, and to obtain an output signal seemingly from one pixel. The pixel unit includes an absorbing unit configured to absorb overflowing electric charge from a photoelectric conversion element with a high sensitivity.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: July 18, 2017
    Assignee: SONY CORPORATION
    Inventors: Eiichi Funatsu, Hiroaki Ebihara, Yoshiharu Kudoh
  • Publication number: 20170085815
    Abstract: A solid-state image pickup device includes a pixel unit in which a plurality of photoelectric conversion elements having different sensitivities are arranged; and a pixel reading unit configured to read and add output signals from the plurality of photoelectric conversion elements in the pixel unit, and to obtain an output signal seemingly from one pixel. The pixel unit includes an absorbing unit configured to absorb overflowing electric charge from a photoelectric conversion element with a high sensitivity.
    Type: Application
    Filed: November 30, 2016
    Publication date: March 23, 2017
    Inventors: Eiichi Funatsu, Hiroaki Ebihara, Yoshiharu Kudoh
  • Patent number: 9571763
    Abstract: A method of reading out a pixel includes photogenerating charge carriers during a single integration time in photodetectors of each one of a plurality of sub-pixels included in the pixel. Each one of the plurality of sub-pixels of the pixel has a same color filter. A floating diffusion node of the pixel is reset. The floating diffusion node is sampled to generate a reset output sample signal. Charge carriers that were photogenerated in a first portion of the plurality of sub-pixels are transferred to the floating diffusion node. The floating diffusion node is sampled to generate a first output sample signal. Charge carriers that were photogenerated in a second portion of the plurality of sub-pixels are transferred to the floating diffusion node. The floating diffusion node is sampled to generate a second output sample signal.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: February 14, 2017
    Assignee: OmniVision Technologies, Inc.
    Inventors: Eiichi Funatsu, Yaowu Mo
  • Patent number: 9530816
    Abstract: Forming a back-illuminated type CMOS image sensor, includes process for formation of a registration mark on the wiring side of a silicon substrate during formation of an active region or a gate electrode. A silicide film using an active region may also be used for the registration mark. Thereafter, the registration mark is read from the back-side by use of red light or near infrared rays, and registration of the stepper is accomplished. It is also possible to form a registration mark in a silicon oxide film on the back-side (illuminated side) in registry with the registration mark on the wiring side, and to achieve the desired registration by use of the registration mark thus formed.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: December 27, 2016
    Assignee: Sony Corporation
    Inventors: Takashi Abe, Nobuo Nakamura, Keiji Mabuchi, Tomoyuki Umeda, Hiroaki Fujita, Eiichi Funatsu, Hiroki Sato
  • Publication number: 20160373644
    Abstract: A method of focusing an image sensor includes scanning a first portion of an image frame from an image sensor a first time at a first rate to produce first focus data. A second portion of the image frame from the image sensor is scanned at a second rate to read image data from the second portion. The first rate is greater than the second rate. The first portion of the image frame is scanned a second time at the first rate to produce second focus data. The first focus data and the second focus data are compared, and the focus of a lens is adjusted in response to the comparison of the first focus data and the second focus data.
    Type: Application
    Filed: September 2, 2016
    Publication date: December 22, 2016
    Inventors: Tiejun Dai, Eiichi Funatsu, Donghui Wu, Zheng Yang, Xiao Xie
  • Patent number: 9525835
    Abstract: A solid-state image pickup device including a pixel unit in which a plurality of photoelectric conversion elements having different sensitivities are arranged; and a pixel reading unit configured to read and add output signals from the plurality of photoelectric conversion elements in the pixel unit, and to obtain an output signal seemingly from one pixel. The pixel unit includes an absorbing unit configured to absorb overflowing electric charge from a photoelectric conversion element with a high sensitivity.
    Type: Grant
    Filed: July 23, 2013
    Date of Patent: December 20, 2016
    Assignee: Sony Corporation
    Inventors: Eiichi Funatsu, Hiroaki Ebihara, Yoshiharu Kudoh
  • Patent number: 9521343
    Abstract: A CMOS sensor has unit pixels each structured by a light receiving element and three transistors, to prevent against the phenomenon of saturation shading and the reduction of dynamic range. The transition time (fall time), in switching off the voltage on a drain line shared in all pixels, is given longer than the transition time in turning of any of the reset line and the transfer line. For this reason, the transistor constituting a DRN drive buffer is made proper in its W/L ratio. Meanwhile, a control resistance or current source is inserted on a line to the GND, to make proper the operation current during driving. This reduces saturation shading amount. By making a reset transistor in a depression type, the leak current to a floating diffusion is suppressed to broaden the dynamic range.
    Type: Grant
    Filed: March 28, 2013
    Date of Patent: December 13, 2016
    Assignee: Sony Corporation
    Inventors: Keiji Mabuchi, Eiichi Funatsu, Masanori Kasai
  • Publication number: 20160343768
    Abstract: Forming a back-illuminated type CMOS image sensor, includes process for formation of a registration mark on the wiring side of a silicon substrate during formation of an active region or a gate electrode. A silicide film using an active region may also be used for the registration mark. Thereafter, the registration mark is read from the back-side by use of red light or near infrared rays, and registration of the stepper is accomplished. It is also possible to form a registration mark in a silicon oxide film on the back-side (illuminated side) in registry with the registration mark on the wiring side, and to achieve the desired registration by use of the registration mark thus formed.
    Type: Application
    Filed: August 1, 2016
    Publication date: November 24, 2016
    Inventors: Takashi Abe, Nobuo Nakamura, Keiji Mabuchi, Tomoyuki Umeda, Hiroaki Fujita, Eiichi Funatsu, Hiroki Sato
  • Patent number: 9462179
    Abstract: A method of focusing an image sensor includes scanning a first portion of an image frame from an image sensor a first time at a first rate to produce first focus data. A second portion of the image frame from the image sensor is scanned at a second rate to read image data from the second portion. The first rate is greater than the second rate. The first portion of the image frame is scanned a second time at the first rate to produce second focus data. The first focus data and the second focus data are compared, and the focus of a lens is adjusted in response to the comparison of the first focus data and the second focus data.
    Type: Grant
    Filed: August 25, 2015
    Date of Patent: October 4, 2016
    Assignee: OmniVision Technologies, Inc.
    Inventors: Tiejun Dai, Eiichi Funatsu, Donghui Wu, Zheng Yang, Xiao Xie