Patents by Inventor Eric A. Foreman

Eric A. Foreman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250005244
    Abstract: Timing constraint auto-creation for integrated circuit testing includes analyzing an integrated circuit design using a first clocking attribute, wherein the first clocking attribute describes a first clock for the integrated circuit design; identifying, based on the analysis and the first clocking attribute, design features of the integrated circuit design necessitating timing constraints; and generating, based on the identified design features, the timing constraints for the static timing analysis of the integrated circuit design.
    Type: Application
    Filed: June 27, 2023
    Publication date: January 2, 2025
    Inventors: ERIC FOREMAN, JACK DILULLO, NATHAN BUCK, MICHAEL HEMSLEY WOOD, ROBERT JOHN ALLEN, HEMLATA GUPTA, NATESAN VENKATESWARAN, KERIM KALAFALA
  • Publication number: 20240386175
    Abstract: The present disclosure describes systems and methods for performing timing analysis of circuit designs. According to an embodiment, a method includes assigning a timing margin to a non-scan latch of a circuit design and performing a timing analysis on the circuit design using the timing margin for the non-scan latch to produce timing results for the circuit design. The timing results include a slack value. The method also includes calculating a credit based on the slack value and updating the slack value based on the credit.
    Type: Application
    Filed: May 18, 2023
    Publication date: November 21, 2024
    Inventors: Kerim KALAFALA, Michael Hemsley WOOD, Rahul M. RAO, Tsz-Mei KO, Daniel DEDRICK, Eric FOREMAN, Robert John ALLEN, Nathan BUCK, Hemlata GUPTA, Karthik RAJASHEKARA
  • Publication number: 20240330551
    Abstract: Timing analysis of a digital integrated circuit using intent based timing constraints includes defining a plurality of intent groups for an integrated circuit design. Each intent group is associated with a different clock type of the integrated circuit design. A different timing phase of a plurality of timing phases of one or more clock signals of the integrated circuit design is associated with each intent group. One or more timing constraints is associated with each of the intent groups. A timing result is computed based on propagating the timing phases of each of the intent groups and applying the associated timing constraints from an input to a timing point of the integrated circuit design.
    Type: Application
    Filed: March 30, 2023
    Publication date: October 3, 2024
    Inventors: HEMLATA GUPTA, KERIM KALAFALA, MANISH VERMA, JENNIFER ELIZABETH BASILE, ADIL BHANJI, ERIC FOREMAN, JACK DILULLO
  • Patent number: 11720732
    Abstract: Embodiments of the invention are directed to a computer-implemented method of determining timing constraints of a first component-under-design (CUD). The computer-implemented method includes accessing, using a processor, a plurality of timing constraint requirements configured to be placed on the first CUD by one or more second CUDs, wherein each of the plurality of timing constraint requirements is specifically designed for the CUD. The processor is used to perform a comparative analysis of each of the plurality of timing constraints to identify a single timing constraint that satisfies each of the plurality of timing constraints.
    Type: Grant
    Filed: August 16, 2021
    Date of Patent: August 8, 2023
    Assignee: International Business Machines Corporation
    Inventors: Chris Aaron Cavitt, Brandon Albert Bruen, Eric Foreman, Jesse Peter Surprise
  • Publication number: 20230047911
    Abstract: Embodiments of the invention are directed to a computer-implemented method of determining timing constraints of a first component-under-design (CUD). The computer-implemented method includes accessing, using a processor, a plurality of timing constraint requirements configured to be placed on the first CUD by one or more second CUDs, wherein each of the plurality of timing constraint requirements is specifically designed for the CUD. The processor is used to perform a comparative analysis of each of the plurality of timing constraints to identify a single timing constraint that satisfies each of the plurality of timing constraints.
    Type: Application
    Filed: August 16, 2021
    Publication date: February 16, 2023
    Inventors: Chris Aaron Cavitt, Brandon Albert Bruen, Eric Foreman, Jesse Peter Surprise
  • Patent number: 11074386
    Abstract: According to one embodiment, a method, computer system, and computer program product for creating a plurality of process parameters in a circuit design is provided. The present embodiment of the invention may include receiving one parasitic extraction per layer of a circuit is used to obtain a resistance base factor and a capacitance base factor. The embodiment may further include performing Monte Carlo simulations to determine distributions of capacitance and resistance for each metal layer of the circuit, and creating scalars that scale each of the resistance base factor and the capacitance base factor to a minimum and maximum process limit. Additionally, the embodiment may include defining at least one delay corner using the created scalars, and receiving the results of one or more timing analyses performed using the resistance base factor and the capacitance base factor, and the defined delay corner to determine a delay variability per layer.
    Type: Grant
    Filed: August 6, 2019
    Date of Patent: July 27, 2021
    Assignee: International Business Machines Corporation
    Inventors: Eric Foreman, Ning Lu, Jeffrey Hemmett
  • Patent number: 10970448
    Abstract: Systems and methods for improving timing closure of new and existing IC chips by breaking at least one parameter of interest into two or more partial parameters. More specifically, a method is provided for that includes propagating at least one timing analysis run for a semiconductor product. The method further includes identifying at least one parameter of interest used in the at least one timing analysis run. The method further includes splitting the at least one parameter into two parts comprising a controlled part and an uncontrolled part. The method further includes correlating or anti-correlating the controlled part with another parameter used in the at least one timing analysis run. The method further includes projecting timing using the correlation or anti-correlation between the controlled part and the another parameter and using the uncontrolled part of the at least one parameter.
    Type: Grant
    Filed: July 18, 2019
    Date of Patent: April 6, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brian M. Dreibelbis, John P. Dubuque, Eric A. Foreman, Jeffrey G. Hemmett, Lansing D. Pickup, Natesan Venkateswaran, Chandramouli Visweswariah, Vladimir Zolotov
  • Patent number: 10747925
    Abstract: A system and method of performing variable accuracy incremental timing analysis in integrated circuit development includes generating a timing graph for interconnected components. The timing graph represents each pin as a node and each interconnection as an arc. A first node or arc is selected. First-level timing values are obtained for the first node or arc using a first timing model that provides a first level of accuracy. n timing models with corresponding n levels of accuracy are pre-selected. The first-level timing values are copied as second-level timing values and as timing values for every other one of the n levels of accuracy for the first node or arc. A second node or arc downstream from the first node or arc is selected. Second-level timing values for the second node or arc are obtained using a second timing model that provides a second level of accuracy.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: August 18, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jeffrey Hemmett, Kerim Kalafala, Natesan Venkateswaran, Debjit Sinha, Eric Foreman, Chaitanya Ravindra Peddawad
  • Publication number: 20200242205
    Abstract: A system and method of performing variable accuracy incremental timing analysis in integrated circuit development includes generating a timing graph for interconnected components. The timing graph represents each pin as a node and each interconnection as an arc. A first node or arc is selected. First-level timing values are obtained for the first node or arc using a first timing model that provides a first level of accuracy. n timing models with corresponding n levels of accuracy are pre-selected. The first-level timing values are copied as second-level timing values and as timing values for every other one of the n levels of accuracy for the first node or arc. A second node or arc downstream from the first node or arc is selected. Second-level timing values for the second node or arc are obtained using a second timing model that provides a second level of accuracy.
    Type: Application
    Filed: January 25, 2019
    Publication date: July 30, 2020
    Inventors: Jeffrey Hemmett, Kerim Kalafala, Natesan Venkateswaran, Debjit Sinha, Eric Foreman, Chaitanya Ravindra Peddawad
  • Patent number: 10691853
    Abstract: A system and method to perform timing analysis in integrated circuit development involves defining an integrated circuit design as nodes representing components of the integrated circuit design that are interconnected by edges representing wires. Sequentially connected nodes define a path. Statistical variables are defined for a canonical delay model of each node and edge of the integrated circuit design and define a first set of conditions. The method includes performing a statistical static timing analysis to obtain an arrival time at each node as a sum of the canonical delay models for nodes and edges that precede the node in the path of the node, obtaining a projected arrival time at a second set of conditions for the node by scaling the arrival time for the node using scale factors that represent the second set of conditions and using a transformation matrix, and providing the integrated circuit design for fabrication.
    Type: Grant
    Filed: October 24, 2018
    Date of Patent: June 23, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Eric Foreman, James Gregerson, Gregory Schaeffer, Michael H. Wood
  • Publication number: 20200134114
    Abstract: A system and method to perform timing analysis in integrated circuit development involves defining an integrated circuit design as nodes representing components of the integrated circuit design that are interconnected by edges representing wires. Sequentially connected nodes define a path. Statistical variables are defined for a canonical delay model of each node and edge of the integrated circuit design and define a first set of conditions. The method includes performing a statistical static timing analysis to obtain an arrival time at each node as a sum of the canonical delay models for nodes and edges that precede the node in the path of the node, obtaining a projected arrival time at a second set of conditions for the node by scaling the arrival time for the node using scale factors that represent the second set of conditions and using a transformation matrix, and providing the integrated circuit design for fabrication.
    Type: Application
    Filed: October 24, 2018
    Publication date: April 30, 2020
    Inventors: Eric Foreman, James Gregerson, Gregory Schaeffer, Michael H. Wood
  • Patent number: 10606970
    Abstract: Examples of techniques for statistical static timing analysis of an integrated circuit are disclosed. In one example according to aspects of the present disclosure, a computer-implemented method is provided. The method comprises performing an initial statistical static timing analysis of the integrated circuit to create a parameterized model of the integrated circuit for a plurality of paths using a plurality of timing corners to calculate a timing value for each of the plurality of paths, each of the plurality of timing corners representing a set of timing performance parameters. The method further comprises determining at least one worst timing corner from the parameterized model for each of the plurality of paths based on the initial statistical static timing analysis and calculated timing value for each of the plurality of paths. The method also comprises performing a subsequent analysis of the integrated circuit using the at least one worst timing corner.
    Type: Grant
    Filed: April 12, 2018
    Date of Patent: March 31, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Eric A. Foreman, Jeffrey G. Hemmett, Kerim Kalafala, Gregory M. Schaeffer, Stephen G. Shuma, Alexander J. Suess, Natesan Venkateswaran, Chandramouli Visweswariah, Vladimir Zolotov
  • Patent number: 10546095
    Abstract: Reducing the runtime overhead needed for testing of an integrated circuit design. A determination may be made of parameters that clock routing and data routing in an integrated circuit are dependent upon. A determination is made of whether the parameters are suitable for compaction, such as by determining whether the parameters are utilized in only one of clock routing or data routing. The parameters suitable for compaction are defined or redefined into at least one proxy compacted parameter. A timing analysis for the integrated circuit is performed using the proxy compacted parameter instead of performing the timing analysis using the parameters suitable for compaction.
    Type: Grant
    Filed: June 13, 2017
    Date of Patent: January 28, 2020
    Assignee: International Business Machines Corporation
    Inventors: Eric Foreman, Jeffrey Hemmett
  • Publication number: 20190362046
    Abstract: According to one embodiment, a method, computer system, and computer program product for creating a plurality of process parameters in a circuit design is provided. The present embodiment of the invention may include receiving one parasitic extraction per layer of a circuit is used to obtain a resistance base factor and a capacitance base factor. The embodiment may further include performing Monte Carlo simulations to determine distributions of capacitance and resistance for each metal layer of the circuit, and creating scalars that scale each of the resistance base factor and the capacitance base factor to a minimum and maximum process limit. Additionally, the embodiment may include defining at least one delay corner using the created scalars, and receiving the results of one or more timing analyses performed using the resistance base factor and the capacitance base factor, and the defined delay corner to determine a delay variability per layer.
    Type: Application
    Filed: August 6, 2019
    Publication date: November 28, 2019
    Inventors: Eric Foreman, Ning Lu, Jeffrey Hemmett
  • Patent number: 10489540
    Abstract: Solutions for integrating manufacturing feedback into an integrated circuit design are disclosed. In one embodiment, a computer-implemented method is disclosed including: defining an acceptable yield requirement for a first integrated circuit product; obtaining manufacturing data about the first integrated circuit product; performing a regression analysis on data representing paths in the first integrated circuit product to define a plurality of parameter settings based upon the acceptable yield requirement and the manufacturing data; determining a projection corner associated with the parameter settings for satisfying the acceptable yield requirement; and modifying a design of a second integrated circuit product based upon the projection corner and the plurality of parameter settings.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: November 26, 2019
    Assignee: International Business Machines Corporation
    Inventors: Nathan C. Buck, Brian M. Dreibelbis, John P. Dubuque, Eric A. Foreman, Peter A. Habitz, Jeffrey G. Hemmett, Natesan Venkateswaran, Chandramouli Visweswariah, Xiaoyue Wang, Vladimir Zolotov
  • Publication number: 20190340323
    Abstract: Systems and methods for improving timing closure of new and existing IC chips by breaking at least one parameter of interest into two or more partial parameters. More specifically, a method is provided for that includes propagating at least one timing analysis run for a semiconductor product. The method further includes identifying at least one parameter of interest used in the at least one timing analysis run. The method further includes splitting the at least one parameter into two parts comprising a controlled part and an uncontrolled part. The method further includes correlating or anti-correlating the controlled part with another parameter used in the at least one timing analysis run. The method further includes projecting timing using the correlation or anti-correlation between the controlled part and the another parameter and using the uncontrolled part of the at least one parameter.
    Type: Application
    Filed: July 18, 2019
    Publication date: November 7, 2019
    Inventors: Brian M. DREIBELBIS, John P. DUBUQUE, Eric A. FOREMAN, Jeffrey G. HEMMETT, Lansing D. PICKUP, Natesan VENKATESWARAN, Chandramouli VISWESWARIAH, Vladimir ZOLOTOV
  • Patent number: 10409938
    Abstract: According to one embodiment, a method, computer system, and computer program product for creating a plurality of process parameters in a circuit design is provided. The present embodiment of the invention may include receiving one parasitic extraction per layer of a circuit is used to obtain a resistance base factor and a capacitance base factor. The embodiment may further include performing Monte Carlo simulations to determine distributions of capacitance and resistance for each metal layer of the circuit, and creating scalars that scale each of the resistance base factor and the capacitance base factor to a minimum and maximum process limit. Additionally, the embodiment may include defining at least one delay corner using the created scalars, and receiving the results of one or more timing analyses performed using the resistance base factor and the capacitance base factor, and the defined delay corner to determine a delay variability per layer.
    Type: Grant
    Filed: June 15, 2017
    Date of Patent: September 10, 2019
    Assignee: International Business Machines Corporation
    Inventors: Eric Foreman, Ning Lu, Jeffrey Hemmett
  • Patent number: 10393532
    Abstract: In an approach for determining navigation routes, a computer identifies an emergency situation and a corresponding location. The computer identifies an emergency service based on the identified emergency situation and the corresponding location. The computer identifies an emergency treatment provider based on the identified emergency situation and the corresponding location. The computer determines a navigation route based on respective locations of the identified emergency situation, the identified emergency service, and the identified emergency treatment provider. The computer identifies one or more incoming devices on the determined navigation route. The computer determines an alternate navigation route for the identified one or more incoming devices, wherein the determined alternate navigation route reduces travel on the determined navigation route.
    Type: Grant
    Filed: October 20, 2015
    Date of Patent: August 27, 2019
    Assignee: International Business Machines Corporation
    Inventors: Eric A. Foreman, Sudeep Mandal
  • Patent number: 10394982
    Abstract: Systems and methods for improving timing closure of new and existing IC chips by breaking at least one parameter of interest into two or more partial parameters. More specifically, a method is provided for that includes propagating at least one timing analysis run for a semiconductor product. The method further includes identifying at least one parameter of interest used in the at least one timing analysis run. The method further includes splitting the at least one parameter into two parts comprising a controlled part and an uncontrolled part. The method further includes correlating or anti-correlating the controlled part with another parameter used in the at least one timing analysis run. The method further includes projecting timing using the correlation or anti-correlation between the controlled part and the another parameter and using the uncontrolled part of the at least one parameter.
    Type: Grant
    Filed: February 26, 2014
    Date of Patent: August 27, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brian M. Dreibelbis, John P. Dubuque, Eric A. Foreman, Jeffrey G. Hemmett, Lansing D. Pickup, Natesan Venkateswaran, Chandramouli Visweswariah, Vladimir Zolotov
  • Patent number: 10380286
    Abstract: The computer identifies an integrated circuit design; identifies a timing model associated with the identified integrated circuit design; defines one or more static single sided variables; defines one or more regions of one or more of the defined one or more static single sided variables that are treated linearly; defines one or more multi-sided variables based on the defined one or more regions of the one or more of the defined one or more static single sided variables; identifies one or more timing paths within the identified integrated circuit design; performs a statistical static timing analysis on the identified timing model for the identified one or more timing paths within the identified integrated circuit design utilizing the defined one or more multi-sided variables; provides one or more timing quantities that project within a multi-parameter space based on the performed statistical static timing analysis.
    Type: Grant
    Filed: February 20, 2017
    Date of Patent: August 13, 2019
    Assignee: International Business Machines Corporation
    Inventors: Robert J. Allen, Nathan C. Buck, Eric A. Foreman, Jeffrey G. Hemmett, Kerim Kalafala, Gregory M. Schaeffer, Stephen G. Shuma, Debjit Sinha, Natesan Venkateswaran, Vladimir Zolotov