Patents by Inventor Eric R. Miller

Eric R. Miller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180374930
    Abstract: A method and structures are used to fabricate a nanosheet semiconductor device. Nanosheet fins including nanosheet stacks including alternating silicon (Si) layers and silicon germanium (SiGe) layers are formed on a substrate and etched to define a first end and a second end along a first axis between which each nanosheet fin extends parallel to every other nanosheet fin. The SiGe layers are undercut in the nanosheet stacks at the first end and the second end to form divots, and a dielectric is deposited in the divots. The SiGe layers between the Si layers are removed before forming source and drain regions of the nanosheet semiconductor device such that there are gaps between the Si layers of each nanosheet stack, and the dielectric anchors the Si layers. The gaps are filled with an oxide that is removed after removing the dummy gate and prior to forming the replacement gate.
    Type: Application
    Filed: August 21, 2018
    Publication date: December 27, 2018
    Inventors: Marc A. Bergendahl, Kangguo Cheng, Fee Li Lie, Eric R. Miller, John R. Sporre, Sean Teehan
  • Publication number: 20180350812
    Abstract: A method of forming a complementary metal oxide semiconductor (CMOS) device on a substrate, including forming a plurality of vertical fins on the substrate, forming a first set of source/drain projections on the first subset of vertical fins, forming a second set of source/drain projections on the second subset of vertical fins, where the second set of source/drain projections is a different oxidizable material from the oxidizable material of the first set of source/drain projections, converting a portion of each of the second set of source/drain projections and a portion of each of the first set of source/drain projections to an oxide, removing the converted oxide portion of the first set of source/drain projections to form a source/drain seed mandrel, and removing a portion of the converted oxide portion of the second set of source/drain projections to form a dummy post.
    Type: Application
    Filed: July 19, 2018
    Publication date: December 6, 2018
    Inventors: Kangguo Cheng, Fee Li Lie, Eric R. Miller, Sean Teehan
  • Publication number: 20180342614
    Abstract: Embodiments are directed to methods and resulting structures for a vertical field effect transistor (VFET) having a super long channel. A pair of semiconductor fins is formed on a substrate. A semiconductor pillar is formed between the semiconductor fins on the substrate. A region that extends under all of the semiconductor fins and under part of the semiconductor pillar is doped. A conductive gate is formed over a channel region of the semiconductor fins and the semiconductor pillar. A surface of the semiconductor pillar serves as an extended channel region when the gate is active.
    Type: Application
    Filed: May 23, 2017
    Publication date: November 29, 2018
    Inventors: Marc A. Bergendahl, Kangguo Cheng, Gauri Karve, Fee Li Lie, Eric R. Miller, John R. Sporre, Sean Teehan
  • Publication number: 20180342615
    Abstract: Embodiments are directed to methods and resulting structures for a vertical field effect transistor (VFET) having a super long channel. A pair of semiconductor fins is formed on a substrate. A semiconductor pillar is formed between the semiconductor fins on the substrate. A region that extends under all of the semiconductor fins and under part of the semiconductor pillar is doped. A conductive gate is formed over a channel region of the semiconductor fins and the semiconductor pillar. A surface of the semiconductor pillar serves as an extended channel region when the gate is active.
    Type: Application
    Filed: November 15, 2017
    Publication date: November 29, 2018
    Inventors: Marc A. Bergendahl, Kangguo Cheng, Gauri Karve, Fee Li Lie, Eric R. Miller, John R. Sporre, Sean Teehan
  • Patent number: 10141445
    Abstract: A nano-sheet semiconductor structure and a method for fabricating the same. The nano-sheet structure includes a substrate and at least one alternating stack of semiconductor material layers and metal gate material layers. The nano-sheet semiconductor structure further comprises a source region and a drain region. A first plurality of epitaxially grown interconnects contacts the source region and the semiconductor layers in the alternating stack. A second plurality of epitaxially grown interconnects contacts the drain region and the semiconductor layers in the alternating stack. The method includes removing a portion of alternating semiconductor layers and metal gate material layers. A first plurality of interconnects is epitaxially grown between and in contact with the semiconductor layers and the source region. A second plurality of interconnects is epitaxially grown between and in contact with the semiconductor layers and the drain region.
    Type: Grant
    Filed: July 26, 2017
    Date of Patent: November 27, 2018
    Assignee: International Business Machines Corporation
    Inventors: Marc A. Bergendahl, Kangguo Cheng, Eric R. Miller, John R. Sporre, Sean Teehan
  • Publication number: 20180337261
    Abstract: A semiconductor device comprises a nanowire arranged over a substrate, a gate stack arranged around the nanowire, a spacer arranged along a sidewall of the gate stack, a cavity defined by a distal end of the nanowire and the spacer, and a source/drain region partially disposed in the cavity and in contact with the distal end of the nanowire.
    Type: Application
    Filed: July 27, 2018
    Publication date: November 22, 2018
    Inventors: Marc A. Bergendahl, Kangguo Cheng, Fee Li Lie, Eric R. Miller, Jeffrey C. Shearer, John R. Sporre, Sean Teehan
  • Publication number: 20180308978
    Abstract: Transistors and methods of forming the same include forming a semiconductor fin from a first material on dielectric layer. Material is etched away from the dielectric layer directly underneath a channel region of the semiconductor fin, with the semiconductor fin still being supported by the dielectric layer in a source and drain region. A gate stack is formed around the channel region of the semiconductor fin, with a portion of the gate stack underneath the semiconductor fin being larger than a portion of the gate stack above the semiconductor fin.
    Type: Application
    Filed: April 24, 2017
    Publication date: October 25, 2018
    Inventors: Marc A. Bergendahl, Kangguo Cheng, Gauri Karve, Fee Li Lie, Eric R. Miller, John R. Sporre, Sean Teehan
  • Patent number: 10109722
    Abstract: The disclosure relates to methods of forming etch-resistant spacers in an integrated circuit (IC) structure. Methods according to the disclosure can include: forming a mask on an upper surface of a gate structure positioned over a substrate; forming a spacer material on the substrate, the mask, and exposed sidewalls of the gate structure; forming a separation layer over the substrate and laterally abutting the spacer material to a predetermined height, such that an exposed portion of the spacer material is positioned above an upper surface of the separation layer and at least partially in contact with the mask; and implanting a dopant into the exposed portion of the spacer material to yield a dopant-implanted region within the spacer material, wherein the dopant-implanted region of the spacer material has a greater etch resistivity than a remainder of the spacer material.
    Type: Grant
    Filed: March 2, 2017
    Date of Patent: October 23, 2018
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Ruilong Xie, Zhenxing Bi, Pietro Montanini, Eric R. Miller, Balasubramanian Pranatharthiharan, Oleg Gluschenkov, Ruqiang Bao, Kangguo Cheng
  • Publication number: 20180301365
    Abstract: Methods, assemblies, and equipment are described for bonding one or more die that may be of dissimilar thickness to a wafer. The die may be fabricated and singulated with a planarized oxide layer protecting from wafer dicing and handling debris one or more metallized post structures connecting to an integrated circuit. Face sides of the die are bonded to a first handle wafer, such that the respective post structures are aligned in a common plane. The substrate material back sides of the bonded die are then thinned to a uniform thickness and bonded to a second handle wafer. The assembly may then be flipped, and the first handle wafer and protective layer including potential dicing and handling debris removed. The post structures are revealed, resulting in a composite wafer assembly including the second handle and one or more uniformly thinned die mounted thereto.
    Type: Application
    Filed: April 4, 2018
    Publication date: October 18, 2018
    Applicant: Raytheon Company
    Inventors: Sean P. Kilcoyne, Eric R. Miller
  • Publication number: 20180294263
    Abstract: A method of forming a semiconductor device that includes forming a trench adjacent to a gate structure to expose a contact surface of one of a source region and a drain region. A sacrificial spacer may be formed on a sidewall of the trench and on a sidewall of the gate structure. A metal contact may then be formed in the trench to at least one of the source region and the drain region. The metal contact has a base width that is less than an upper surface width of the metal contact. The sacrificial spacer may be removed, and a substantially conformal dielectric material layer can be formed on sidewalls of the metal contact and the gate structure. Portions of the conformally dielectric material layer contact one another at a pinch off region to form an air gap between the metal contact and the gate structure.
    Type: Application
    Filed: June 7, 2018
    Publication date: October 11, 2018
    Inventors: Marc A. Bergendahl, Kangguo Cheng, Fee Li Lie, Eric R. Miller, John R. Sporre, Sean Teehan
  • Patent number: 10083962
    Abstract: A method of forming a complementary metal oxide semiconductor (CMOS) device on a substrate, including forming a plurality of vertical fins on the substrate, forming a first set of source/drain projections on the first subset of vertical fins, forming a second set of source/drain projections on the second subset of vertical fins, where the second set of source/drain projections is a different oxidizable material from the oxidizable material of the first set of source/drain projections, converting a portion of each of the second set of source/drain projections and a portion of each of the first set of source/drain projections to an oxide, removing the converted oxide portion of the first set of source/drain projections to form a source/drain seed mandrel, and removing a portion of the converted oxide portion of the second set of source/drain projections to form a dummy post.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: September 25, 2018
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Fee Li Lie, Eric R. Miller, Sean Teehan
  • Patent number: 10074730
    Abstract: A semiconductor device comprises a nanowire arranged over a substrate, a gate stack arranged around the nanowire, a spacer arranged along a sidewall of the gate stack, a cavity defined by a distal end of the nanowire and the spacer, and a source/drain region partially disposed in the cavity and in contact with the distal end of the nanowire.
    Type: Grant
    Filed: January 28, 2016
    Date of Patent: September 11, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Marc A. Bergendahl, Kangguo Cheng, Fee Li Lie, Eric R. Miller, Jeffrey C. Shearer, John R. Sporre, Sean Teehan
  • Publication number: 20180254331
    Abstract: The disclosure relates to methods of forming etch-resistant spacers in an integrated circuit (IC) structure. Methods according to the disclosure can include: forming a mask on an upper surface of a gate structure positioned over a substrate; forming a spacer material on the substrate, the mask, and exposed sidewalls of the gate structure; forming a separation layer over the substrate and laterally abutting the spacer material to a predetermined height, such that an exposed portion of the spacer material is positioned above an upper surface of the separation layer and at least partially in contact with the mask; and implanting a dopant into the exposed portion of the spacer material to yield a dopant-implanted region within the spacer material, wherein the dopant-implanted region of the spacer material has a greater etch resistivity than a remainder of the spacer material.
    Type: Application
    Filed: March 2, 2017
    Publication date: September 6, 2018
    Inventors: Ruilong Xie, Zhenxing Bi, Pietro Montanini, Eric R. Miller, Balasubramanian Pranatharthiharan, Oleg Gluschenkov, Ruqiang Bao, Kangguo Cheng
  • Publication number: 20180226262
    Abstract: A method for fabricating a semiconductor structure. The method includes forming a plurality of mandrel structures. A plurality of first spacers is formed on sidewalls of the mandrel structures. A plurality of second spacers is formed on sidewalls of the first spacers. The plurality of first spacers is removed selective to the plurality of second spacers and mandrel structures. A cut mask is formed over a first set of second spacers of the plurality of second spacers and a first set of mandrel structures of the plurality of mandrel structures. A second set of second spacers of the plurality of spacers and a second set of mandrel structures of the plurality of mandrel structures remain exposed. One of the second set of mandrel structures and the second set of second spacers is removed selective to the second set of second spacers and the second set of mandrel structures, respectively.
    Type: Application
    Filed: March 29, 2018
    Publication date: August 9, 2018
    Applicant: International Business Machines Corporation
    Inventors: Gauri KARVE, Fee Li LIE, Eric R. MILLER, Stuart A. SIEG, John R. SPORRE, Sean TEEHAN
  • Patent number: 10043801
    Abstract: A method of forming a semiconductor device that includes forming a trench adjacent to a gate structure to expose a contact surface of one of a source region and a drain region. A sacrificial spacer may be formed on a sidewall of the trench and on a sidewall of the gate structure. A metal contact may then be formed in the trench to at least one of the source region and the drain region. The metal contact has a base width that is less than an upper surface width of the metal contact. The sacrificial spacer may be removed, and a substantially conformal dielectric material layer can be formed on sidewalls of the metal contact and the gate structure. Portions of the conformally dielectric material layer contact one another at a pinch off region to form an air gap between the metal contact and the gate structure.
    Type: Grant
    Filed: October 18, 2017
    Date of Patent: August 7, 2018
    Assignee: International Business Machines Corporation
    Inventors: Marc A. Bergendahl, Kangguo Cheng, Fee Li Lie, Eric R. Miller, John R. Sporre, Sean Teehan
  • Publication number: 20180219101
    Abstract: A nano-sheet semiconductor structure and a method for fabricating the same. The nano-sheet structure includes a substrate and at least one alternating stack of semiconductor material layers and metal gate material layers. The nano-sheet semiconductor structure further comprises a source region and a drain region. A first plurality of epitaxially grown interconnects contacts the source region and the semiconductor layers in the alternating stack. A second plurality of epitaxially grown interconnects contacts the drain region and the semiconductor layers in the alternating stack. The method includes removing a portion of alternating semiconductor layers and metal gate material layers. A first plurality of interconnects is epitaxially grown between and in contact with the semiconductor layers and the source region. A second plurality of interconnects is epitaxially grown between and in contact with the semiconductor layers and the drain region.
    Type: Application
    Filed: March 28, 2018
    Publication date: August 2, 2018
    Inventors: Marc A. Bergendahl, Kangguo Cheng, Eric R. Miller, John R. Sporre, Sean Teehan
  • Patent number: 10014391
    Abstract: Techniques relate to a gate stack for a semiconductor device. A vertical fin is formed on a substrate. The vertical fin has an upper portion and a bottom portion. The upper portion of the vertical fin has a recessed portion on sides of the upper portion. A gate stack is formed in the recessed portion of the upper portion of the vertical fin.
    Type: Grant
    Filed: June 28, 2016
    Date of Patent: July 3, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Marc A. Bergendahl, Kangguo Cheng, Fee Li Lie, Eric R. Miller, John R. Sporre, Sean Teehan
  • Patent number: 9997369
    Abstract: A method for fabricating a semiconductor structure. The method includes forming a plurality of mandrel structures. A plurality of first spacers is formed on sidewalls of the mandrel structures. A plurality of second spacers is formed on sidewalls of the first spacers. The plurality of first spacers is removed selective to the plurality of second spacers and mandrel structures. A cut mask is formed over a first set of second spacers in the plurality of second spacers and a first set of mandrel structures in the plurality of mandrel structures. A second set of second spacers in the plurality of spacers and a second set of mandrel structures in the plurality of mandrel structures remain exposed. One of the second set of mandrel structures and the second set of second spacers is removed selective to the second set of second spacers and the second set of mandrel structures, respectively.
    Type: Grant
    Filed: September 27, 2016
    Date of Patent: June 12, 2018
    Assignee: International Business Machines Corporation
    Inventors: Gauri Karve, Fee Li Lie, Eric R. Miller, Stuart A. Sieg, John R. Sporre, Sean Teehan
  • Publication number: 20180158818
    Abstract: A method of forming a semiconductor device that includes forming a trench adjacent to a gate structure to expose a contact surface of one of a source region and a drain region. A sacrificial spacer may be formed on a sidewall of the trench and on a sidewall of the gate structure. A metal contact may then be formed in the trench to at least one of the source region and the drain region. The metal contact has a base width that is less than an upper surface width of the metal contact. The sacrificial spacer may be removed, and a substantially conformal dielectric material layer can be formed on sidewalls of the metal contact and the gate structure. Portions of the conformally dielectric material layer contact one another at a pinch off region to form an air gap between the metal contact and the gate structure.
    Type: Application
    Filed: October 18, 2017
    Publication date: June 7, 2018
    Inventors: Marc A. Bergendahl, Kangguo Cheng, Fee Li Lie, Eric R. Miller, John R. Sporre, Sean Teehan
  • Patent number: 9985138
    Abstract: A nano-sheet semiconductor structure and a method for fabricating the same. The nano-sheet structure includes a substrate and at least one alternating stack of semiconductor material layers and metal gate material layers. The nano-sheet semiconductor structure further comprises a source region and a drain region. A first plurality of epitaxially grown interconnects contacts the source region and the semiconductor layers in the alternating stack. A second plurality of epitaxially grown interconnects contacts the drain region and the semiconductor layers in the alternating stack. The method includes removing a portion of alternating semiconductor layers and metal gate material layers. A first plurality of interconnects is epitaxially grown between and in contact with the semiconductor layers and the source region. A second plurality of interconnects is epitaxially grown between and in contact with the semiconductor layers and the drain region.
    Type: Grant
    Filed: May 10, 2017
    Date of Patent: May 29, 2018
    Assignee: International Business Machines Corporation
    Inventors: Marc A. Bergendahl, Kangguo Cheng, Eric R. Miller, John R. Sporre, Sean Teehan