Patents by Inventor Franz-Josef Niedernostheide

Franz-Josef Niedernostheide has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150091053
    Abstract: An IGBT includes at least one first type transistor cell, including a base region, a first emitter region, a body region, and a second emitter region. The body region is arranged between the first emitter region and the base region. The base region is arranged between the body region and the second emitter region. The IGBT further includes a gate electrode adjacent the body region and dielectrically insulated from the body region by a gate dielectric, and a base electrode adjacent the base region and dielectrically insulated from the base region by a base electrode dielectric. The base region has a first base region section adjoining the base electrode dielectric and a second base region section arranged between the second emitter region and the first base region section. A doping concentration of the first base region section is higher than a doping concentration of the second base region section.
    Type: Application
    Filed: September 30, 2013
    Publication date: April 2, 2015
    Inventors: Christian Philipp Sandow, Hans-Joachim Schulze, Johannes Georg Laven, Franz-Josef Niedernostheide, Frank Pfirsch, Hans-Peter Felsl
  • Publication number: 20150021670
    Abstract: A field-effect semiconductor device includes a semiconductor body having a first surface and an edge, an active area, and a peripheral area between the active area and the edge, a source metallization on the first surface and a drain metallization. In the active area, first conductivity type drift portions alternate with second conductivity type compensation regions. The drift portions contact the drain metallization and have a first maximum doping concentration. The compensation regions are in Ohmic contact with the source metallization. The peripheral area includes a first edge termination region and a second semiconductor region in Ohmic contact with the drift portions having a second maximum doping of the first conductivity type which lower than the first maximum doping concentration by a factor of ten. The first edge termination region of the second conductivity type adjoins the second semiconductor region and is in Ohmic contact with the source metallization.
    Type: Application
    Filed: November 15, 2013
    Publication date: January 22, 2015
    Inventors: Hans-Joachim Schulze, Franz-Josef Niedernostheide, Anton Mauder, Joachim Weyers, Franz Hirler, Markus Schmitt, Armin Willmeroth, Björn Fischer, Stefan Gamerith
  • Patent number: 8921931
    Abstract: A semiconductor body of a semiconductor device includes a doped layer of a first conductivity type and one or more doped zones of a second conductivity type. The one or more doped zones are formed between the doped layer and the first surface of a semiconductor body. Trench structures extend from one of the first and the second opposing surface into the semiconductor body. The trench structures are arranged between portions of the semiconductor body which are electrically connected to each other. The trench structures may be arranged for mitigating mechanical stress, locally controlling charge carrier mobility, locally controlling a charge carrier recombination rate and/or shaping buried diffusion zones.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: December 30, 2014
    Assignee: Infineon Technologies Austria AG
    Inventors: Anton Mauder, Franz-Josef Niedernostheide, Hans-Joachim Schulze, Holger Schulze
  • Patent number: 8889531
    Abstract: A semiconductor body comprised of a semiconductor material includes a first monocrystalline region of the semiconductor material having a first lattice constant along a reference direction, a second monocrystalline region of the semiconductor material having a second lattice constant, which is different than the first, along the reference direction, and a third, strained monocrystalline region between the first region and the second region.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: November 18, 2014
    Assignee: Infineon Technologies Austria AG
    Inventors: Hans-Joachim Schulze, Franz-Josef Niedernostheide, Reinhart Job
  • Patent number: 8872264
    Abstract: A semiconductor device includes a first trench and a second trench extending into a semiconductor body from a surface. A body region of a first conductivity type adjoins a first sidewall of the first trench and a first sidewall of the second trench, the body region including a channel portion adjoining to a source structure and being configured to be controlled in its conductivity by a gate structure. The channel portion is formed at the first sidewall of the second trench and is not formed at the first sidewall of the first trench. An electrically floating semiconductor zone of the first conductivity type adjoins the first trench and has a bottom side located deeper within the semiconductor body than the bottom side of the body region.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: October 28, 2014
    Assignee: Infineon Technologies Austria AG
    Inventors: Frank Pfirsch, Maria Cotorogea, Franz Hirler, Franz-Josef Niedernostheide, Thomas Raker, Hans-Joachim Schulze, Hans Peter Felsl
  • Patent number: 8859409
    Abstract: A semiconductor component includes a semiconductor body having a first side and a second side opposite the first side. In the semiconductor body, a dopant region is formed by a dopant composed of an oxygen complex. The dopant region extends over a section L having a length of at least 10 ?m along a direction from the first side to the second side. The dopant region has an oxygen concentration in a range of 1×1017 cm?3 to 5×1017 cm?3 over the section L.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: October 14, 2014
    Assignee: Infineon Technologies AG
    Inventors: Thomas Neidhart, Franz Josef Niedernostheide, Hans-Joachim Schulze, Werner Schustereder, Alexander Susiti
  • Publication number: 20140264432
    Abstract: A semiconductor device in a semiconductor substrate includes a first main surface and a transistor cell. The transistor cell includes a drift region of a first conductivity type, a body region of a second conductivity type between the drift region and the first main surface, an active trench in the first main surface extending to the drift region, a source region of the first conductivity in the body region adjacent to the active trench, and a body trench at the first main surface extending to the drift region and adjacent to the body region and the drift region. The active trench includes a gate insulating layer at sidewalls and a bottom side, and a gate conductive layer. The body trench includes a conductive layer and an insulating layer at sidewalls and a bottom side, and asymmetric to a perpendicular axis of the first main surface and the body trench center.
    Type: Application
    Filed: March 12, 2013
    Publication date: September 18, 2014
    Inventors: Maria Cotorogea, Frank Wolter, Hans-Joachim Schulze, Franz-Josef Niedernostheide, Yvonne Gawlina-Schmidl
  • Patent number: 8829562
    Abstract: A semiconductor device includes a trench extending into a drift zone of a semiconductor body from a first surface. The semiconductor device further includes a gate electrode in the trench and a body region adjoining a sidewall of the trench. The semiconductor device further includes a dielectric structure in the trench. The dielectric structure includes a high-k dielectric in a lower part of the trench. The high-k dielectric includes a dielectric constant higher than that of SiO2. An extension of the high-k dielectric in a vertical direction perpendicular to the first surface is limited between a bottom side of the trench and a level where a bottom side of the body region adjoins the sidewall of the trench.
    Type: Grant
    Filed: July 24, 2012
    Date of Patent: September 9, 2014
    Assignee: Infineon Technologies AG
    Inventors: Hans-Joachim Schulze, Franz Hirler, Hans-Peter Felsl, Franz-Josef Niedernostheide
  • Publication number: 20140217463
    Abstract: A bipolar semiconductor switch having a semiconductor body is provided. The semiconductor body includes a first p-type semiconductor region, a second p-type semiconductor region, and a first n-type semiconductor region forming a first pn-junction with the first p-type semiconductor region and a second pn-junction with the second p-type semiconductor region. On a shortest path through the first n-type semiconductor region between the first pn-junction and the second pn-junction a concentration of charge recombination centers and a concentration of n-dopants vary. The concentration of the charge recombination centers has a maximum at a point along the shortest path where the concentration of n-dopants is at least close to a maximum dopant concentration. Further, a manufacturing method for the bipolar semiconductor switch is provided.
    Type: Application
    Filed: February 7, 2013
    Publication date: August 7, 2014
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Hans-Joachim Schulze, Franz-Josef Niedernostheide
  • Publication number: 20140151858
    Abstract: A description is given of a method for doping a semiconductor body, and a semiconductor body produced by such a method. The method comprises irradiating the semiconductor body with protons and irradiating the semiconductor body with electrons. After the process of irradiating with protons and after the process of irradiating with electrons, the semiconductor body is subjected to heat treatment in order to attach the protons to vacancies by means of diffusion.
    Type: Application
    Filed: October 18, 2013
    Publication date: June 5, 2014
    Inventors: Hans-Joachim Schulze, Johannes Laven, Franz Josef Niedernostheide, Frank Dieter Pfirsch
  • Patent number: 8741750
    Abstract: A method for fabricating a semiconductor body is presented. The semiconductor body includes a p-conducting zone, an n-conducting zone and a pn junction in a depth T1 in the semiconductor body between the p-conducting zone and the n-conducting zone. The method includes providing the semiconductor body, producing the p-doped zone by the diffusion of an impurity that forms an acceptor in a first direction into the semiconductor body, and producing the n-conducting zone by the implantation of protons in the first direction into the semiconductor body into a depth T2>T1 and the subsequent heat treatment of the semiconductor body in order to form hydrogen-induced donors.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: June 3, 2014
    Assignee: Infineon Technologies Austria AG
    Inventors: Frank Hille, Franz Josef Niedernostheide, Hans-Joachim Schulze, Holger Schulze
  • Patent number: 8653556
    Abstract: A vertical semiconductor device includes a semiconductor body, and first and second contacts on opposite sides of the semiconductor body. A plurality of regions are formed in the semiconductor body including, in a direction from the first contact to the second contact, a first region of a first conductivity type, a second region of a second conductivity type; and a third region of the first conductivity type. The third region is electrically connected to the second contact. A semiconductor zone of the second conductivity type and increased doping density is arranged in the second region. The semiconductor zone separates a first part of the second region from a second part of the second region. The semiconductor zone has a maximum doping density exceeding about 1016 cm?3 and a thickness along the direction from the first contact to the second contact of less than about 3 ?m.
    Type: Grant
    Filed: May 7, 2009
    Date of Patent: February 18, 2014
    Assignee: Infineon Technologies Austria AG
    Inventors: Franz Josef Niedernostheide, Hans-Joachim Schulze
  • Publication number: 20140034998
    Abstract: A semiconductor device includes a semiconductor body including a first surface having a normal direction defining a vertical direction, a first n-type semiconductor region arranged below the first surface and having a first maximum doping concentration and a second n-type semiconductor region arranged below the first n-type semiconductor region and including, in a vertical cross-section, two spaced apart first n-type portions each adjoining the first n-type semiconductor region, having a maximum doping concentration which is higher than the first maximum doping concentration and having a first minimum distance to the first surface, and a second n-type portion adjoining the first n-type semiconductor region, having a maximum doping concentration which is higher than the first maximum doping concentration and a second minimum distance to the first surface which is larger than the first minimum distance. A p-type second semiconductor layer forms a pn-junction with the second n-type portion.
    Type: Application
    Filed: October 15, 2013
    Publication date: February 6, 2014
    Applicant: Infineon Technologies AG
    Inventors: Hans-Joachim Schulze, Franz-Josef Niedernostheide, Yvonne Gawlina
  • Publication number: 20140027812
    Abstract: A semiconductor device includes a trench extending into a drift zone of a semiconductor body from a first surface. The semiconductor device further includes a gate electrode in the trench and a body region adjoining a sidewall of the trench. The semiconductor device further includes a dielectric structure in the trench. The dielectric structure includes a high-k dielectric in a lower part of the trench. The high-k dielectric includes a dielectric constant higher than that of SiO2. An extension of the high-k dielectric in a vertical direction perpendicular to the first surface is limited between a bottom side of the trench and a level where a bottom side of the body region adjoins the sidewall of the trench.
    Type: Application
    Filed: July 24, 2012
    Publication date: January 30, 2014
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Hans-Joachim Schulze, Franz Hirler, Hans-Peter Felsl, Franz-Josef Niedernostheide
  • Patent number: 8637328
    Abstract: An integrated circuit and method for making an integrated circuit including doping a semiconductor body is disclosed. One embodiment provides defect-correlated donors and/or acceptors. The defects required for this are produced by electron irradiation of the semiconductor body. Form defect-correlated donors and/or acceptors with elements or element compounds are introduced into the semiconductor body.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: January 28, 2014
    Assignee: Infineon Technologies Austria AG
    Inventors: Frank Pfirsch, Hans-Joachim Schulze, Franz-Josef Niedernostheide
  • Publication number: 20130320487
    Abstract: A semiconductor body of a semiconductor device includes a doped layer of a first conductivity type and one or more doped zones of a second conductivity type. The one or more doped zones are formed between the doped layer and the first surface of a semiconductor body. Trench structures extend from one of the first and the second opposing surface into the semiconductor body. The trench structures are arranged between portions of the semiconductor body which are electrically connected to each other. The trench structures may be arranged for mitigating mechanical stress, locally controlling charge carrier mobility, locally controlling a charge carrier recombination rate and/or shaping buried diffusion zones.
    Type: Application
    Filed: June 4, 2012
    Publication date: December 5, 2013
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Anton Mauder, Franz-Josef Niedernostheide, Hans-Joachim Schulze, Holger Schulze
  • Publication number: 20130307018
    Abstract: A semiconductor device includes a first semiconductor region including a first semiconductor material. The semiconductor device further includes a second semiconductor region adjoining the first semiconductor region. The second semiconductor region includes a second semiconductor material different from the first semiconductor material. The semiconductor device further includes a drift or base zone in the first semiconductor region. The semiconductor device further includes an emitter region in the second semiconductor region. The second semiconductor region includes at least one type of deep-level dopant. A solubility of the at least one type of deep-level dopant is higher in the second semiconductor region than in the first semiconductor region.
    Type: Application
    Filed: May 18, 2012
    Publication date: November 21, 2013
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Stephan Voss, Franz-Josef Niedernostheide, Hans-Joachim Schulze
  • Patent number: 8587025
    Abstract: A method for forming a laterally varying n-type doping concentration is provided. The method includes providing a semiconductor wafer with a first surface, a second surface arranged opposite to the first surface and a first n-type semiconductor layer having a first maximum doping concentration, implanting protons of a first maximum energy into the first n-type semiconductor layer, and locally treating the second surface with a masked hydrogen plasma. Further, a semiconductor device is provided.
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: November 19, 2013
    Assignee: Infineon Technologies AG
    Inventors: Hans-Joachim Schulze, Franz-Josef Niedernostheide, Yvonne Gawlina
  • Publication number: 20130270632
    Abstract: A semiconductor device includes a first trench and a second trench extending into a semiconductor body from a surface. A body region of a first conductivity type adjoins a first sidewall of the first trench and a first sidewall of the second trench, the body region including a channel portion adjoining to a source structure and being configured to be controlled in its conductivity by a gate structure. The channel portion is formed at the first sidewall of the second trench and is not formed at the first sidewall of the first trench. An electrically floating semiconductor zone of the first conductivity type adjoins the first trench and has a bottom side located deeper within the semiconductor body than the bottom side of the body region.
    Type: Application
    Filed: June 13, 2013
    Publication date: October 17, 2013
    Inventors: Frank Pfirsch, Maria Cotorogea, Franz Hirler, Franz-Josef Niedernostheide, Thomas Raker, Hans-Joachim Schulze, Hans Peter Felsl
  • Publication number: 20130249058
    Abstract: A semiconductor component includes a semiconductor body having a first side and a second side opposite the first side. In the semiconductor body, a dopant region is formed by a dopant composed of an oxygen complex. The dopant region extends over a section L having a length of at least 10 ?m along a direction from the first side to the second side. The dopant region has an oxygen concentration in a range of 1×1017 cm?3 to 5×1017 cm?3 over the section L.
    Type: Application
    Filed: September 13, 2012
    Publication date: September 26, 2013
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Thomas Neidhart, Franz Josef Niedernostheide, Hans-Joachim Schulze, Werner Schustereder, Alexander Susiti