Patents by Inventor Haiting Wang

Haiting Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10833067
    Abstract: A structure includes a first dielectric over a trench silicide (TS) contact and over a gate structure, and at least one cavity in the first dielectric. A metal resistor layer is on a bottom and sidewalls of the at least one cavity and extends over the first dielectric. A first contact is on the metal resistor layer over the first dielectric; and a second contact is on the metal resistor layer over the first dielectric. The metal resistor layer is over the TS contact and over the gate structure. Where a plurality of cavities are provided in the dielectric, a resistor structure formed by the metal resistor layer may have an undulating cross-section over the plurality of cavities and the dielectric.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: November 10, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Haiting Wang, Sipeng Gu, Jiehui Shu, Scott H. Beasor, Zhenyu Hu
  • Publication number: 20200350202
    Abstract: Methods of forming interconnects and structures for interconnects. A hardmask layer is patterned to form a plurality of first trenches arranged with a first pattern, and sidewall spacers are formed inside the first trenches on respective sidewalls of the hardmask layer bordering the first trenches. An etch mask is formed over the hardmask layer. The etch mask includes an opening exposing a portion of the hardmask layer between a pair of the sidewall spacers. The portion of the hardmask layer exposed by the opening in the etch mask is removed to define a second trench in the hardmask layer.
    Type: Application
    Filed: May 1, 2019
    Publication date: November 5, 2020
    Inventors: Xiaoming Yang, Haiting Wang, Hong Yu, Jeffrey Chee, Guoliang Zhu
  • Patent number: 10825913
    Abstract: A method, apparatus, and manufacturing system are disclosed for a fin field effect transistor having a reduced parasitic capacitance between a gate and a source/drain contact. In one embodiment, we disclose a semiconductor device including first and second fins; an isolation structure between the fins; first and second metal gates; a first dielectric body under the first metal gate and on the substrate between the first fin and the second fin, wherein a top of the first dielectric body is below a top of the first metal gate; and a second dielectric body in the second metal gate and on the substrate between the first fin and the second fin, wherein a top of the second dielectric body is at or above a top of the second metal gate.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: November 3, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Hui Zang, Haiting Wang, Ruilong Xie
  • Patent number: 10818498
    Abstract: Structures for a field effect-transistor and methods of forming a structure for a field-effect transistor. A gate electrode arranged adjacent to an outer sidewall spacer and an inner sidewall spacer. The gate electrode has a top surface that is recessed relative to the outer sidewall spacer and the inner sidewall spacer. A gate cap includes a first section of a first width arranged over the first section of the gate electrode and a second section of a second width arranged over the first section of the gate cap and the inner sidewall spacer. The second width is greater than the first width, and the inner sidewall spacer is composed of a low-k dielectric material.
    Type: Grant
    Filed: May 9, 2019
    Date of Patent: October 27, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Yanping Shen, Haiting Wang, Hui Zang
  • Patent number: 10818557
    Abstract: This disclosure is directed to an integrated circuit (IC) structure. The IC structure may include a semiconductor structure including two source/drain regions; a metal gate positioned on the semiconductor structure adjacent to and between the source/drain regions; a metal cap with a different metal composition than the metal gate and having a thickness in the range of approximately 0.5 nanometer (nm) to approximately 5 nm positioned on the metal gate; a first dielectric cap layer positioned above the semiconductor structure; an inter-layer dielectric (ILD) positioned above the semiconductor structure and laterally abutting both the metal cap and the metal gate, wherein an upper surface of the ILD has a greater height above the semiconductor structure than an upper surface of the metal gate; a second dielectric cap layer positioned on the ILD and above the metal cap; and a contact on and in electrical contact with the metal cap.
    Type: Grant
    Filed: July 3, 2018
    Date of Patent: October 27, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Sipeng Gu, Akshey Sehgal, Xinyuan Dou, Sunil K. Singh, Ravi P. Srivastava, Haiting Wang, Scott H. Beasor
  • Patent number: 10818659
    Abstract: Processes form integrated circuit apparatuses that include parallel fins, wherein the fins are patterned in a first direction, and parallel gate structures intersect the fins in a second direction perpendicular to the first direction. Also, source/drain structures are positioned on the fins between the gate structures, source/drain contacts are positioned on the source/drain structures, sidewall insulators are positioned between the gate structures and the source/drain contacts (wherein the sidewall insulators have a lower portion adjacent to the fins and an upper portion distal to the fins), and upper sidewall spacers are positioned between the upper portion of the sidewall insulators and the source/drain contacts.
    Type: Grant
    Filed: October 16, 2018
    Date of Patent: October 27, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Haiting Wang, Hui Zang, Guowei Xu, Scott Beasor
  • Publication number: 20200335602
    Abstract: Disclosed is a metal gate (e.g., a replacement metal gate (RMG) for a field effect transistor (FET) and a method of forming the metal gate. The method includes depositing a conformal dielectric layer to line a gate opening and performing a series of unclustered and clustered conformal metal deposition and chamfer processes to selectively adjust the heights of conformal metal layers within the gate opening. By selectively controlling the heights of the conformal metal layers, the method provides improved overall gate height control and gate quality particularly when the metal gate has a small critical dimension (CD) and/or a high aspect ratio (AR). The method can also include using different etch techniques during the different chamfer processes and, particularly, when different materials and/or different material interfaces are exposed to an etchant in order to ensure an essentially uniform etch rate of the conformal metal layer(s) at issue in a direction that is essentially vertical.
    Type: Application
    Filed: April 22, 2019
    Publication date: October 22, 2020
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Tao Chu, Rongtao Lu, Ayse M. Ozbek, Wei Ma, Haiting Wang
  • Publication number: 20200335619
    Abstract: The present disclosure generally relates to semiconductor structures and, more particularly, to middle of line gate structures and methods of manufacture. The structure includes: a plurality of adjacent gate structures; a bridged gate structure composed of a plurality of the adjacent gate structures; source and drain regions adjacent to the bridged gate structure and comprising source and drain metallization features; and contacts to the bridged gate structure and the source and drain metallization features.
    Type: Application
    Filed: April 17, 2019
    Publication date: October 22, 2020
    Inventors: Yanping SHEN, Haiting WANG, Hui ZANG, Jiehui SHU
  • Patent number: 10797049
    Abstract: A FinFET structure having reduced effective capacitance and including a substrate having at least two fins thereon laterally spaced from one another, a metal gate over fin tops of the fins and between sidewalls of upper portions of the fins, source/drain regions in each fin on opposing sides of the metal gate, and a dielectric bar within the metal gate located between the sidewalls of the upper portions of the fins, the dielectric bar being laterally spaced away from the sidewalls of the upper portions of the fins within the metal gate.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: October 6, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Hui Zang, Haiting Wang, Chung Foong Tan, Guowei Xu, Ruilong Xie, Scott H. Beasor, Liu Jiang
  • Patent number: 10784143
    Abstract: Structures that include a field effect-transistor and methods of forming a structure that includes a field-effect transistor. A semiconductor fin has an upper portion and a lower portion, and a trench isolation region surrounds the lower portion of the semiconductor fin. The trench isolation region has a top surface arranged above the lower portion of the semiconductor fin and arranged below the upper portion of the semiconductor fin. A dielectric layer arranged over the top surface of the trench isolation region. The dielectric layer is composed of a low-k dielectric material.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: September 22, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Haiting Wang, Guowei Xu, Hui Zang, Yue Zhong
  • Patent number: 10763176
    Abstract: One illustrative device disclosed includes a gate structure and a sidewall spacer positioned adjacent the gate structure, the sidewall spacer having an upper surface, wherein an upper portion of the gate structure is positioned above a level of the upper surface of the sidewall spacer. In this illustrative example, the device also includes a tapered upper surface on the upper portion of the gate structure and a gate cap, the gate cap being positioned above the tapered upper surface of the gate structure and above the upper surface of the sidewall spacer.
    Type: Grant
    Filed: October 30, 2019
    Date of Patent: September 1, 2020
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Hui Zang, Scott Beasor, Haiting Wang
  • Publication number: 20200251377
    Abstract: Structures that include a field effect-transistor and methods of forming a structure that includes a field-effect transistor. A semiconductor fin has an upper portion and a lower portion, and a trench isolation region surrounds the lower portion of the semiconductor fin. The trench isolation region has a top surface arranged above the lower portion of the semiconductor fin and arranged below the upper portion of the semiconductor fin. A dielectric layer arranged over the top surface of the trench isolation region. The dielectric layer is composed of a low-k dielectric material.
    Type: Application
    Filed: January 31, 2019
    Publication date: August 6, 2020
    Inventors: Haiting Wang, Guowei Xu, Hui Zang, Yue Zhong
  • Patent number: 10727133
    Abstract: A method of forming a gate structure with an undercut region includes, among other things, forming a plurality of fins above a substrate and an isolation structure above the substrate and between the plurality of fins, forming a placeholder gate structure above the plurality of fins in a first region and above the isolation structure in a second region, selectively removing a portion of the placeholder structure in the second region to define an undercut recess, forming a spacer structure adjacent the sacrificial gate structure, forming a dielectric layer adjacent the spacer structure and in the undercut recess, removing remaining portions of the placeholder gate structure to define a gate cavity, and forming a replacement gate structure in the gate cavity.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: July 28, 2020
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Qun Gao, Balaji Kannan, Shesh Mani Pandey, Haiting Wang
  • Patent number: 10714376
    Abstract: The present disclosure relates to methods for forming fill materials in trenches having different widths and related structures. A method may include: forming a first fill material in a first and second trench where the second trench has a greater width than the first trench; removing a portion of the first fill material from each trench and forming a second fill material over the first fill material; removing a portion of the first and second fill material within the second trench; and forming a third fill material in the second trench. The structure may include a first fill material in trenches having different widths wherein the upper surfaces of the first fill material in each trench are substantially co-planar. The structure may also include a second fill material on the first fill material in each trench, the second fill material having a substantially equal thickness in each trench.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: July 14, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Chih-Chiang Chang, Haifeng Sheng, Jiehui Shu, Haigou Huang, Pei Liu, Jinping Liu, Haiting Wang, Daniel J. Jaeger
  • Patent number: 10707175
    Abstract: One illustrative example of an overlay mark disclosed herein includes four quadrants (I-IV). Each quadrant of the mark contains an inner periodic structure and an outer periodic structure. Each of the outer periodic structures includes a plurality of outer features. Each of the inner periodic structures includes a plurality of first inner groups, each of the first inner groups having a plurality of first inner features, each first inner group being oriented such that there is an end-to-end spacing relationship between each first inner group and a selected one of the outer features.
    Type: Grant
    Filed: May 22, 2018
    Date of Patent: July 7, 2020
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Wei Zhao, Minghao Tang, Rui Chen, Dongyue Yang, Haiting Wang, Erik Geiss, Scott Beasor
  • Patent number: 10707303
    Abstract: A semiconductor device, comprising a semiconductor substrate; an isolation layer disposed on the semiconductor substrate; a first active region and a second active region disposed at least partially above the isolation layer; a first gate structure and a second gate structure disposed on the isolation layer, the first active region, and the second active region; and an isolation pillar disposed on the isolation layer, between the first and second active regions, and between and in contact with the first and second gate structures, wherein the isolation pillar has an inverted-T shape. A method for making the semiconductor device. A system configured to implement the method and manufacture the semiconductor device.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: July 7, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Haiting Wang, Hui Zang, Zhenyu Owen Hu
  • Patent number: 10700173
    Abstract: One illustrative FinFET device disclosed herein includes a source/drain structure that, when viewed in a cross-section taken through the fin in a direction corresponding to the gate width (GW) direction of the device, comprises a perimeter and a bottom surface. The source/drain structure also has an axial length that extends in a direction corresponding to the gate length (GL) direction of the device. The device also includes a metal silicide material positioned on at least a portion of the perimeter of the source/drain structure for at least a portion of the axial length of the source/drain structure and on at least a portion of the bottom surface of the source/drain structure for at least a portion of the axial length of the source/drain structure.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: June 30, 2020
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Yi Qi, Hsien-Ching Lo, Hong Yu, Yanping Shen, Wei Hong, Xing Zhang, Ruilong Xie, Haiting Wang, Hui Zhan, Yong Jun Shi
  • Patent number: 10692987
    Abstract: The disclosure provides an integrated circuit (IC) structure including a first spacer on a semiconductor fin adjacent a first portion of the gate structure, and having a first height above the semiconductor fin; a second spacer on the semiconductor fin adjacent the first spacer, such that the first spacer is horizontally between the first portion of the gate structure and a lower portion of the outer; and a gate cap positioned over the first portion of the gate structure and on the second spacer above the semiconductor fin. The gate cap defines an air gap horizontally between the first portion of the gate structure and an upper portion of the second spacer, and vertically between an upper surface of the first spacer and a lower surface of the gate cap.
    Type: Grant
    Filed: October 19, 2018
    Date of Patent: June 23, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Haiting Wang, Guowei Xu, Hui Zang
  • Patent number: 10685881
    Abstract: A method, apparatus, and manufacturing system are disclosed for a fin field effect transistor having a reduced risk of short circuits between a gate and a source/drain contact. In one embodiment, we disclose a semiconductor device including a fin structure comprising a fin body, source/drain regions, and a metal formation disposed above the source/drain regions, wherein the metal formation has a first height; and a gate structure between the source/drain regions, wherein each gate structure comprises spacers in contact with the metal formation, wherein the spacers have a second height less than the first height, a metal plug between the spacers and below the second height, and a T-shaped cap above the metal plug and having the first height.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: June 16, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Hui Zang, Guowei Xu, Haiting Wang
  • Publication number: 20200176444
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to a single diffusion cut for gate structures and methods of manufacture. The structure includes: a plurality of fin structures composed of semiconductor material; a plurality of replacement gate structures extending over the plurality of fin structures; a plurality of diffusion regions adjacent to the each of the plurality of replacement gate structures; and a single diffusion break between the diffusion regions of the adjacent replacement gate structures, the single diffusion break being filled with an insulator material. In a first cross-sectional view, the single diffusion break extends into the semiconductor material and in a second cross-sectional view, the single diffusion break is devoid of semiconductor material of the plurality of fin structures.
    Type: Application
    Filed: November 29, 2018
    Publication date: June 4, 2020
    Inventors: Guowei XU, Hui ZANG, Ruilong XIE, Haiting WANG