Patents by Inventor He Ren

He Ren has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220328352
    Abstract: Methods of forming fully aligned vias connecting two metal lines extending in two directions are described. The fully aligned via is aligned with the first metal line and the second metal line along both directions. A third metal layer is patterned on a top of a second metal layer in electrical contact with a first metal layer. The patterned third metal layer is misaligned from the top of the second metal layer. The second metal layer is recessed to expose sides of the second metal layer and remove portions not aligned sides of the third metal layer.
    Type: Application
    Filed: June 18, 2022
    Publication date: October 13, 2022
    Applicant: Applied Materials, Inc.
    Inventors: He Ren, Hao Jiang, Mehul Naik
  • Publication number: 20220285212
    Abstract: Embodiments of the present disclosure generally relate to subtractive metals, subtractive metal semiconductor structures, subtractive metal interconnects, and to processes for forming such semiconductor structures and interconnects. In an embodiment, a process for fabricating a semiconductor structure is provided. The process includes performing a degas operation on the semiconductor structure and depositing a liner layer on the semiconductor structure. The process further includes performing a sputter operation on the semiconductor structure, and depositing, by physical vapor deposition, a metal layer on the liner layer, wherein the liner layer comprises Ti, Ta, TaN, or combinations thereof, and a resistivity of the metal layer is about 30 ??·cm or less.
    Type: Application
    Filed: March 5, 2021
    Publication date: September 8, 2022
    Inventors: He REN, Hao JIANG, Shi YOU, Mehul B. NAIK
  • Patent number: 11437274
    Abstract: Apparatuses and methods to provide a fully self-aligned via are described. A first metallization layer comprises a set of first conductive lines extending along a first direction on a first insulating layer on a substrate, the set of first conductive lines recessed below a top portion of the first insulating layer. A capping layer is on the first insulating layer, and a second insulating layer is on the capping layer. A second metallization layer comprises a set of second conductive lines on the second insulating layer and on a third insulating layer above the first metallization layer. The set of second conductive lines extend along a second direction that crosses the first direction at an angle. At least one via is between the first metallization layer and the second metallization layer. The via is self-aligned along the second direction to one of the first conductive lines. The tapering angle of the via opening may be in a range of from about 60° to about 120°.
    Type: Grant
    Filed: September 14, 2020
    Date of Patent: September 6, 2022
    Assignee: Micromaterials LLC
    Inventors: Regina Freed, Madhur Sachan, Susmit Singha Roy, Gabriela Alva, Ho-yung David Hwang, Uday Mitra, El Mehdi Bazizi, Angada Bangalore Sachid, He Ren, Sushant Mittal
  • Publication number: 20220270871
    Abstract: Methods for pre-cleaning substrates having metal and dielectric surfaces are described. The substrate is exposed to a strong reductant to remove contaminants from the metal surface and damage the dielectric surface. The substrate is then exposed to an oxidation process to repair the damage to the dielectric surface and oxidize the metal surface. The substrate is then exposed to a weak reductant to reduce the metal oxide to a pure metal surface without substantially affecting the dielectric surface. Processing tools and computer readable media for practicing the method are also described.
    Type: Application
    Filed: May 12, 2022
    Publication date: August 25, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Xi Cen, Yakuan Yao, Yiming Lai, Kai Wu, Avgerinos V. Gelatos, David T. Or, Kevin Kashefi, Yu Lei, Lin Dong, He Ren, Yi Xu, Mehul Naik, Hao Chen, Mang-Mang Ling
  • Patent number: 11410885
    Abstract: Methods of forming fully aligned vias connecting two metal lines extending in two directions are described. The fully aligned via is aligned with the first metal line and the second metal line along both directions. A third metal layer is patterned on a top of a second metal layer in electrical contact with a first metal layer. The patterned third metal layer is misaligned from the top of the second metal layer. The second metal layer is recessed to expose sides of the second metal layer and remove portions not aligned sides of the third metal layer.
    Type: Grant
    Filed: May 1, 2020
    Date of Patent: August 9, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: He Ren, Hao Jiang, Mehul Naik
  • Patent number: 11380536
    Abstract: Methods for pre-cleaning substrates having metal and dielectric surfaces are described. The substrate is exposed to a strong reductant to remove contaminants from the metal surface and damage the dielectric surface. The substrate is then exposed to an oxidation process to repair the damage to the dielectric surface and oxidize the metal surface. The substrate is then exposed to a weak reductant to reduce the metal oxide to a pure metal surface without substantially affecting the dielectric surface. Processing tools and computer readable media for practicing the method are also described.
    Type: Grant
    Filed: May 5, 2020
    Date of Patent: July 5, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Xi Cen, Yakuan Yao, Yiming Lai, Kai Wu, Avgerinos V. Gelatos, David T. Or, Kevin Kashefi, Yu Lei, Lin Dong, He Ren, Yi Xu, Mehul Naik, Hao Chen, Mang-Mang Ling
  • Publication number: 20220181204
    Abstract: Methods and apparatus for forming a reverse selective etch stop layer are disclosed. Some embodiments of the disclosure provide interconnects with lower resistance than methods which utilize non-selective (e.g., blanket) etch stop layers. Some embodiments of the disclosure utilize reverse selective etch stop layers within a subtractive etch scheme. Some embodiments of the disclosure selectively deposit the etch stop layer by passivating the surface of the metal material.
    Type: Application
    Filed: December 3, 2020
    Publication date: June 9, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Kevin Kashefi, Alexander Jansen, Mehul Naik, He Ren, Lu Chen, Feng Chen
  • Publication number: 20220181201
    Abstract: Embodiments of the disclosure provide methods which reduce or eliminate lateral growth of a selective tungsten layer. Further embodiments provide an integrated clean and deposition method which improves the selectivity of selectively deposited tungsten on trench structures. Additional embodiments provide methods for forming a more uniform and selective bottom-up gap fill for trench structures with improved film properties.
    Type: Application
    Filed: December 3, 2020
    Publication date: June 9, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Yi XU, Yufei HU, He REN, Yu LEI, Shi YOU, Kazuya DAITO
  • Patent number: 11355391
    Abstract: The present disclosure generally relates to methods for processing of substrates, and more particularly relates to methods for forming a metal gapfill. In one implementation, the method includes forming a metal gapfill in an opening using a multi-step process. The multi-step process includes forming a first portion of the metal gapfill, performing a sputter process to form one or more layers on one or more side walls, and growing a second portion of the metal gapfill to fill the opening with the metal gapfill. The metal gapfill formed by the multi-step process is seamless, and the one or more layers formed on the one or more side walls seal any gaps or defects between the metal gapfill and the side walls. As a result, fluids utilized in subsequent processes do not diffuse through the metal gapfill.
    Type: Grant
    Filed: February 27, 2020
    Date of Patent: June 7, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Xi Cen, Feiyue Ma, Kai Wu, Yu Lei, Kazuya Daito, Yi Xu, Vikash Banthia, Mei Chang, He Ren, Raymond Hoiman Hung, Yakuan Yao, Avgerinos V. Gelatos, David T. Or, Jing Zhou, Guoqiang Jian, Chi-Chou Lin, Yiming Lai, Jia Ye, Jenn-Yue Wang
  • Publication number: 20220130676
    Abstract: A method of forming an interconnect structure for semiconductor devices is described. The method comprises depositing an etch stop layer on a substrate by physical vapor deposition followed by in situ deposition of a metal layer on the etch stop layer. The in situ deposition comprises flowing a plasma processing gas into the chamber and exciting the plasma processing gas into a plasma to deposit the metal layer on the etch stop layer on the substrate. The substrate is continuously under vacuum and is not exposed to ambient air during the deposition processes.
    Type: Application
    Filed: January 6, 2022
    Publication date: April 28, 2022
    Applicant: Applied Materials, Inc.
    Inventors: He Ren, Hao Jiang, Mehul Naik, Wenting Hou, Jianxin Lei, Chen Gong, Yong Cao
  • Patent number: 11289342
    Abstract: Exemplary methods of etching semiconductor substrates may include flowing a halogen-containing precursor into a processing region of a semiconductor processing chamber. The processing region may house a substrate having a conductive material and an overlying mask material. The conductive material may be characterized by a first surface in contact with the mask material, and the mask material may define an edge region of the conductive material. The methods may include contacting the edge region of the conductive material with the halogen-containing precursor and the oxygen-containing precursor. The methods may include etching in a first etching operation the edge region of the conductive material to a partial depth through the conductive material to produce a footing of conductive material protruding along the edge region of the conductive material. The methods may also include removing the footing of conductive material in a second etching operation.
    Type: Grant
    Filed: June 15, 2020
    Date of Patent: March 29, 2022
    Assignee: Applied Materials, Inc.
    Inventors: He Ren, Jong Mun Kim, Maximillian Clemons, Minrui Yu, Mehul Naik, Chentsau Ying
  • Patent number: 11257677
    Abstract: A method of forming an interconnect structure for semiconductor devices is described. The method comprises depositing an etch stop layer on a substrate by physical vapor deposition followed by in situ deposition of a metal layer on the etch stop layer. The in situ deposition comprises flowing a plasma processing gas into the chamber and exciting the plasma processing gas into a plasma to deposit the metal layer on the etch stop layer on the substrate. The substrate is continuously under vacuum and is not exposed to ambient air during the deposition processes.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: February 22, 2022
    Assignee: Applied Materials, Inc.
    Inventors: He Ren, Hao Jiang, Mehul Naik, Wenting Hou, Jianxin Lei, Chen Gong, Yong Cao
  • Patent number: 11205589
    Abstract: Methods and apparatus for lowering resistivity of a metal line, including: depositing a first metal layer atop a second metal layer to under conditions sufficient to increase a grain size of a metal of the first metal layer; etching the first metal layer to form a metal line with a first line edge roughness and to expose a portion of the second metal layer; removing impurities from the metal line by a hydrogen treatment process; and annealing the metal line at a pressure between 760 Torr and 76,000 Torr to reduce the first line edge roughness.
    Type: Grant
    Filed: October 6, 2019
    Date of Patent: December 21, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: He Ren, Hao Jiang, Mehul Naik, Srinivas D Nemani, Ellie Yieh
  • Publication number: 20210384035
    Abstract: Methods of forming metallic tungsten films selectively on a conductive surface relative to a dielectric surface are described. A substrate is exposed to a first process condition to deposit a fluorine-free metallic tungsten film. The fluorine-free metallic tungsten film is exposed to a second process condition to deposit a tungsten film on the fluorine-free metallic tungsten film.
    Type: Application
    Filed: April 8, 2021
    Publication date: December 9, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Ilanit Fisher, Shih Chung Chen, Kedi Wu, Ashley Lin, Chi-Chou Lin, Yi Xu, Yu Lei, Mandyam Sriram, Wen Ting Chen, Srinivas Gandikota, Chenfei Shen, Naomi Yoshida, He Ren
  • Publication number: 20210384036
    Abstract: Methods of forming metallic tungsten films selectively on a conductive surface relative to a dielectric surface are described. A substrate is exposed to a first process condition to deposit a tungsten-containing film that is substrate free of tungsten metal. The tungsten-containing film is then converted to a metallic tungsten film by exposure to a second process condition.
    Type: Application
    Filed: June 4, 2021
    Publication date: December 9, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Ilanit Fisher, Chi-Chou Lin, Kedi Wu, Wen Ting Chen, Shih Chung Chen, Srinivas Gandikota, Mandyam Sriram, Chenfei Shen, Naomi Yoshida, He Ren
  • Publication number: 20210351032
    Abstract: Methods for pre-cleaning substrates having metal and dielectric surfaces are described. The substrate is exposed to a strong reductant to remove contaminants from the metal surface and damage the dielectric surface. The substrate is then exposed to an oxidation process to repair the damage to the dielectric surface and oxidize the metal surface. The substrate is then exposed to a weak reductant to reduce the metal oxide to a pure metal surface without substantially affecting the dielectric surface. Processing tools and computer readable media for practicing the method are also described.
    Type: Application
    Filed: May 5, 2020
    Publication date: November 11, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Xi Cen, Yakuan Yao, Yiming Lai, Kai Wu, Avgerinos V. Gelatos, David T. Or, Keyvan Kashefi, Yu Lei, Lin Dong, He Ren, Yi Xu, Mehul Naik, Hao Chen, Mang-Mang Ling
  • Patent number: 11164780
    Abstract: Methods and apparatus for an interconnect formed on a substrate and a method of forming the interconnect thereon. In embodiments, the methods include etching through a hard mask disposed atop a low-k dielectric layer to form a via through the low-k dielectric layer and expose a conductive surface; contacting the conductive surface with dilute hydrofluoric acid to remove contaminants therefrom; removing the hard mask disposed atop the low-k dielectric layer; and applying a remote hydrogen plasma to the conductive surface to form an exposed portion of the conductive surface.
    Type: Grant
    Filed: June 7, 2019
    Date of Patent: November 2, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Shi You, He Ren, Mehul Naik, Yi Xu, Feng Chen
  • Publication number: 20210317580
    Abstract: Embodiments herein provide for oxygen based treatment of low-k dielectric layers deposited using a flowable chemical vapor deposition (FCVD) process. Oxygen based treatment of the FCVD deposited low-k dielectric layers desirably increases the Ebd to capacitance and reliability of the devices while removing voids.
    Type: Application
    Filed: April 14, 2020
    Publication date: October 14, 2021
    Inventors: Shi YOU, He REN, Naomi YOSHIDA, Nikolaos BEKIARIS, Mehul NAIK, Martin Jay SEAMONS, Jingmei LIANG, Mei-Yee SHEK
  • Publication number: 20210305091
    Abstract: Methods of etching a metal layer and a metal-containing barrier layer to a predetermined depth are described. In some embodiments, the metal layer and metal-containing barrier layer are formed on a substrate with a first dielectric and a second dielectric thereon. The metal layer and the metal-containing barrier layer formed within a feature in the first dielectric and the second dielectric. In some embodiments, the metal layer and metal-containing barrier layer can be sequentially etched from a feature formed in a dielectric material. In some embodiments, the sidewalls of the feature formed in a dielectric material are passivated to change the adhesion properties of the dielectric material.
    Type: Application
    Filed: June 11, 2021
    Publication date: September 30, 2021
    Applicant: Micromaterials LLC
    Inventors: He Ren, Amrita B. Mullick, Regina Freed, Mehul Naik, Uday Mitra
  • Patent number: 11094588
    Abstract: Embodiments of the present disclosure generally relate an interconnect structure formed on a substrate and a method of forming the interconnect structure thereon. In one embodiment, a method of forming an interconnect structure includes forming an opening comprising a via and a trench in an insulating structure formed on a substrate, forming a first passivation layer in the opening, removing a portion of the first passivation layer from the opening, and selectively depositing a first metal containing material in the via.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: August 17, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Shi You, He Ren, Mehul B. Naik