Patents by Inventor He Ren

He Ren has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9646876
    Abstract: A method of forming features in a dielectric layer is described. A via, trench or a dual-damascene structure may be present in the dielectric layer prior to depositing a conformal aluminum nitride layer. The conformal aluminum nitride layer is configured to serve as a barrier to prevent diffusion across the barrier. The methods of forming the aluminum nitride layer involve the alternating exposure to two precursor treatments (like ALD) to achieve high conformality. The high conformality of the aluminum nitride barrier layer enables the thickness to be reduced and the effective conductivity of the subsequent gapfill metal layer to be increased.
    Type: Grant
    Filed: February 27, 2015
    Date of Patent: May 9, 2017
    Assignee: Applied Materials, Inc.
    Inventors: Deenesh Padhi, Srinivas Guggilla, Alexandros T. Demos, Bhaskar Kumar, He Ren, Priyanka Dash
  • Patent number: 9640424
    Abstract: Embodiments described herein relate to methods for forming an air gap interconnect. A metal spacer layer is conformally deposited on a substrate having mandrel structures formed thereon. The metal spacer layer is etched to form spacer features and the mandrel structures are removed from the substrate. Various other dielectric deposition, patterning and etching steps may be performed to desirably pattern materials present on the substrate. Ultimately, a trench is formed between adjacent spacer features and a capping layer is deposited over the trench to form an air gap between the adjacent spacer features. For packaging purposes, an interconnect via may be configured to contact at least one of the spacer features adjacent the air gap.
    Type: Grant
    Filed: March 29, 2016
    Date of Patent: May 2, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: He Ren, Mehul B. Naik
  • Publication number: 20170098575
    Abstract: In some embodiments, a method of forming an interconnect structure includes selectively depositing a barrier layer atop a substrate having one or more exposed metal surfaces and one or more exposed dielectric surfaces, wherein a thickness of the barrier layer atop the one or more exposed metal surfaces is greater than the thickness of the barrier layer atop the one or more exposed dielectric surfaces. In some embodiments, a method of forming an interconnect structure includes depositing an etch stop layer comprising aluminum atop a substrate via a physical vapor deposition process; and depositing a barrier layer atop the etch stop layer via a chemical vapor deposition process, wherein the substrate is transferred from a physical vapor deposition chamber after depositing the etch stop layer to a chemical vapor deposition chamber without exposing the substrate to atmosphere.
    Type: Application
    Filed: October 4, 2016
    Publication date: April 6, 2017
    Inventors: Sree Rangasai V. KESAPRAGADA, Kevin MORAES, Srinivas GUGGILLA, He REN, Mehul NAIK, David THOMPSON, Weifeng YE, Yana CHENG, Yong CAO, Xianmin TANG, Paul F. MA, Deenesh PADHI
  • Patent number: 9601431
    Abstract: An interconnect structure for use in semiconductor devices and a method for fabricating the same is described. The method includes positioning a substrate in a vacuum processing chamber. The substrate has an exposed copper surface and an exposed low-k dielectric surface. A metal layer is formed over the copper surface but not over the low-k dielectric surface. A metal-based dielectric layer is formed over the metal layer and the low-k dielectric layer.
    Type: Grant
    Filed: February 5, 2014
    Date of Patent: March 21, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: He Ren, Mehul B. Naik, Yong Cao, Mei-yee Shek, Yana Cheng, Sree Rangasai V. Kesapragada
  • Patent number: 9576810
    Abstract: An apparatus configured to remove metal etch byproducts from the surface of substrates and from the interior of a substrate processing chamber. A plasma is used in combination with a solid state light source, such as an LED, to desorb metal etch byproducts. The desorbed byproducts may then be removed from the chamber.
    Type: Grant
    Filed: May 29, 2014
    Date of Patent: February 21, 2017
    Assignee: Applied Materials, Inc.
    Inventors: Subhash Deshmukh, Joseph Johnson, Jingjing Liu, He Ren
  • Publication number: 20170011887
    Abstract: The invention includes generating a plasma from a process gas for etching copper on a substrate; providing DC bias pulses to the substrate; exposing at least one of the plasma and the substrate to UV light while the DC bias pulses are provided to the substrate. Numerous other aspects are provided.
    Type: Application
    Filed: September 22, 2016
    Publication date: January 12, 2017
    Inventors: Subhash Deshmukh, Jingjing Liu, He Ren
  • Publication number: 20170005041
    Abstract: The present disclosure provides an interconnect formed on a substrate and methods for forming the interconnect on the substrate. In one embodiment, the method for forming an interconnect on a substrate includes depositing a barrier layer on the substrate, depositing a transition layer on the barrier layer, and depositing an etch-stop layer on the transition layer, wherein the transition layer shares a common element with the barrier layer, and wherein the transition layer shares a common element with the etch-stop layer.
    Type: Application
    Filed: June 18, 2016
    Publication date: January 5, 2017
    Inventors: He REN, Mehul B. NAIK, Yong CAO, Yana CHENG, Weifeng YE
  • Publication number: 20160379819
    Abstract: A method for sealing porous low-k dielectric films is provided. The method comprises exposing a substrate to UV radiation and a first reactive gas, wherein the substrate has an open feature defined therein, the open feature defined by a porous low-k dielectric layer and a conductive material, wherein the porous low-k dielectric layer is a silicon and carbon containing material and selectively forming a pore sealing layer in the open feature on exposed surfaces of the porous low-k dielectric layer using UV assisted photochemical vapor deposition.
    Type: Application
    Filed: June 25, 2015
    Publication date: December 29, 2016
    Inventors: He REN, Mehul B. NAIK, Deenesh PADHI, Priyanka DASH, Bhaskar KUMAR, Alexandros T. DEMOS
  • Patent number: 9514953
    Abstract: Implementations described herein generally relate to semiconductor manufacturing and more particularly to methods for etching a low-k dielectric barrier layer disposed on a substrate using a non-carbon based approach. In one implementation, a method for etching a barrier low-k layer is provided. The method comprises (a) exposing a surface of the low-k barrier layer to a treatment gas mixture to modify at least a portion of the low-k barrier layer and (b) chemically etching the modified portion of the low-k barrier layer by exposing the modified portion to a chemical etching gas mixture, wherein the chemical etching gas mixture includes at least an ammonium gas and a nitrogen trifluoride gas or at least a hydrogen gas and a nitrogen trifluoride gas.
    Type: Grant
    Filed: November 14, 2014
    Date of Patent: December 6, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Chia-Ling Kao, Sean Kang, Jeremiah T. Pender, Srinivas D. Nemani, He Ren, Mehul Naik
  • Patent number: 9508561
    Abstract: Embodiments of the present invention provide methods for forming an interconnection structure in semiconductor devices without breaking vacuum with minimum oxidation/atmosphere exposure. In one embodiment, a method for forming an interconnection structure for semiconductor devices includes supplying a barrier layer etching gas mixture into a first processing chamber having a substrate disposed therein to etch portions of a barrier layer exposed by a patterned metal layer until the underlying substrate is exposed, the first processing chamber disposed in a processing system, and forming a liner layer on the substrate covering the etched barrier layer in a second processing chamber disposed in the processing system.
    Type: Grant
    Filed: May 13, 2014
    Date of Patent: November 29, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Mehul B. Naik, Srinivas D. Nemani, Takehito Koshizawa, He Ren
  • Publication number: 20160276610
    Abstract: A polymer solar cell includes a low temperature, solution-processed metal-oxide thin film, such as molybdenum-oxide (MoOx), as a hole-extraction layer (HEW. The low temperature processing allows the metal-oxide thin film to achieve a smoother surface, which allows the thin film to have enhanced light transparency and increased electrical conductivity over that of conventional PEDOT:PSS thin films. As such, the polymer solar cell, which utilizes the metal-oxide thin film as a hole-extraction layer, is able to achieve enhanced power conversion efficiency over conventional polymer solar cells that use PEDOT:PSS as a hole-extraction layer.
    Type: Application
    Filed: November 7, 2014
    Publication date: September 22, 2016
    Applicant: The University of Akron
    Inventors: Xiong GONG, Bohao LI, He REN
  • Publication number: 20160254181
    Abstract: A method of forming features in a dielectric layer is described. A via, trench or a dual-damascene structure may be present in the dielectric layer prior to depositing a conformal aluminum nitride layer. The conformal aluminum nitride layer is configured to serve as a barrier to prevent diffusion across the barrier. The methods of forming the aluminum nitride layer involve the alternating exposure to two precursor treatments (like ALD) to achieve high conformality. The high conformality of the aluminum nitride barrier layer enables the thickness to be reduced and the effective conductivity of the subsequent gapfill metal layer to be increased.
    Type: Application
    Filed: February 27, 2015
    Publication date: September 1, 2016
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Deenesh Padhi, Srinivas Guggilla, Alexandros T. Demos, Bhaskar Kumar, He Ren, Priyanka Dash
  • Publication number: 20160211172
    Abstract: Embodiments described herein relate to methods for forming an air gap interconnect. A metal spacer layer is conformally deposited on a substrate having mandrel structures formed thereon. The metal spacer layer is etched to form spacer features and the mandrel structures are removed from the substrate. Various other dielectric deposition, patterning and etching steps may be performed to desirably pattern materials present on the substrate. Ultimately, a trench is formed between adjacent spacer features and a capping layer is deposited over the trench to form an air gap between the adjacent spacer features. For packaging purposes, an interconnect via may be configured to contact at least one of the spacer features adjacent the air gap.
    Type: Application
    Filed: March 29, 2016
    Publication date: July 21, 2016
    Inventors: He REN, Mehul B. NAIK
  • Patent number: 9384997
    Abstract: A method of etching exposed patterned heterogeneous structures is described and includes a remote plasma etch formed from a reactive precursor. The plasma power is pulsed rather than left on continuously. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents selectively remove one material faster than another. The etch selectivity results from the pulsing of the plasma power to the remote plasma region, which has been found to suppress the number of ionically-charged species that reach the substrate. The etch selectivity may also result from the presence of an ion suppression element positioned between a portion of the remote plasma and the substrate processing region.
    Type: Grant
    Filed: January 22, 2015
    Date of Patent: July 5, 2016
    Assignee: Applied Materials, Inc.
    Inventors: He Ren, Jang-Gyoo Yang, Jonghoon Baek, Anchuan Wang, Soonam Park, Saurabh Garg, Xinglong Chen, Nitin K. Ingle
  • Patent number: 9312168
    Abstract: A method for forming an air gap structure in an integrated layer stack includes dry etching a mold layer disposed on the stack in a processing system under vacuum. The mold layer is disposed between one or more interconnects, and the process of dry etching of the mold layer exposes at least a portion of the interconnects. The method also includes depositing a liner layer over the exposed portion of the interconnects. In another embodiment, a method for forming an air gap structure in an integrated layer stack includes dry etching an oxide mold layer disposed on the stack in an a first processing chamber in a processing system under vacuum. The method also includes depositing a low-k material liner layer over the interconnects, wherein the liner has a thickness of less than about 2 nanometers. The methods disclosed herein are performed in a processing system without breaking vacuum.
    Type: Grant
    Filed: October 24, 2014
    Date of Patent: April 12, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Mehul B. Naik, He Ren, Zhenjiang Cui
  • Patent number: 9305831
    Abstract: Embodiments described herein relate to methods for forming an air gap interconnect. A metal spacer layer is conformally deposited on a substrate having mandrel structures formed thereon. The metal spacer layer is etched to form spacer features and the mandrel structures are removed from the substrate. Various other dielectric deposition, patterning and etching steps may be performed to desirably pattern materials present on the substrate. Ultimately, a trench is formed between adjacent spacer features and a capping layer is deposited over the trench to form an air gap between the adjacent spacer features. For packaging purposes, an interconnect via may be configured to contact at least one of the spacer features adjacent the air gap.
    Type: Grant
    Filed: March 13, 2015
    Date of Patent: April 5, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: He Ren, Mehul B. Naik
  • Patent number: 9299605
    Abstract: Methods for forming a passivation protection structure on a metal line layer formed in an insulating material in an interconnection structure are provided. In one embodiment, a method for forming passivation protection on a metal line in an interconnection structure for semiconductor devices includes selectively forming a metal capping layer on a metal line bounded by a dielectric bulk insulating layer in an interconnection structure formed on a substrate in a processing chamber incorporated in a multi-chamber processing system, in-situ forming a barrier layer on the substrate in the processing chamber; wherein the barrier layer is a metal dielectric layer, and forming a dielectric capping layer on the barrier layer in the multi-chamber processing system.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: March 29, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: He Ren, Mehul B. Naik, Yong Cao, Sree Rangasai V. Kesapragada, Mei-Yee Shek, Yana Cheng
  • Patent number: 9299577
    Abstract: Methods for eliminating early exposure of a conductive layer in a dual damascene structure and for etching a dielectric barrier layer in the dual damascene structure are provided. In one embodiment, a method for etching a dielectric barrier layer disposed on a substrate includes patterning a substrate having a dielectric bulk insulating layer disposed on a dielectric barrier layer using a hardmask layer disposed on the dielectric bulk insulating layer as an etching mask, exposing a portion of the dielectric barrier layer after removing the dielectric bulk insulating layer uncovered by the dielectric bulk insulating layer, removing the hardmask layer from the substrate, and subsequently etching the dielectric barrier layer exposed by the dielectric bulk insulating layer.
    Type: Grant
    Filed: November 13, 2014
    Date of Patent: March 29, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: He Ren, Chia-Ling Kao, Sean Kang, Jeremiah T P Pender, Srinivas D. Nemani, Mehul B. Naik
  • Patent number: 9269563
    Abstract: Methods and apparatuses for forming a dual damascene structure utilizing a selective protection process to protect vias and/or trenches in the dual damascene structure while removing a hardmask layer from the dual damascene structure. In one embodiment, a method for removing a patterned hardmask layer from a substrate includes forming an organic polymer material on a dual damascene structure that exposes substantially a patterned hardmask layer disposed on an upper surface of the dual damascene structure, removing the patterned hardmask layer on the substrate, and removing the organic polymer material from the substrate.
    Type: Grant
    Filed: June 6, 2014
    Date of Patent: February 23, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: He Ren, Mehul B. Naik
  • Patent number: 9257330
    Abstract: Methods of depositing thin, low dielectric constant layers that are effective diffusion barriers on metal interconnects of semiconductor circuits are described. A self-assembled monolayer (SAM) of molecules each having a head moiety and a tail moiety are deposited on the metal. The SAM molecules self-align, wherein the head moiety is formulated to selectively bond to the metal layer leaving the tail moiety disposed at a distal end of the molecule. A dielectric layer is subsequently deposited on the SAM, chemically bonding to the tail moiety of the SAM molecules.
    Type: Grant
    Filed: September 11, 2014
    Date of Patent: February 9, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Amit Chatterjee, Geetika Bajaj, Pramit Manna, He Ren, Tapash Chakraborty, Srinivas D. Nemani, Mehul Naik, Robert Jan visser, Abhijit Basu Mallick