Patents by Inventor Heiko Feldmann

Heiko Feldmann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10101668
    Abstract: An objective having a plurality of optical elements arranged to image a pattern from an object field to an image field at an image-side numerical aperture NA>0.8 with electromagnetic radiation from a wavelength band around a wavelength ? includes a number N of dioptric optical elements, each dioptric optical element i made from a transparent material having a normalized optical dispersion ?ni=ni(?0)?ni(?0+1 pm) for a wavelength variation of 1 pm from a wavelength ?0. The objective satisfies the relation ? ? i = 1 N ? ? ? ? n i ? ( s i - d i ) ? ? 0 ? NA 4 ? A for any ray of an axial ray bundle originating from a field point on an optical axis in the object field, where si is a geometrical path length of a ray in an ith dioptric optical element having axial thickness di and the sum extends on all dioptric optical elements of the objective. Where A=0.2 or below, spherochromatism is sufficiently corrected.
    Type: Grant
    Filed: December 31, 2012
    Date of Patent: October 16, 2018
    Assignee: CARL ZEISS SMT GMBH
    Inventors: Alexander Epple, Heiko Feldmann, Hans-Juergen Rostalski
  • Publication number: 20170322343
    Abstract: The disclosure relates to a microlithographic projection exposure apparatus, such as are used for the production of large-scale integrated electrical circuits and other microstructured components. The disclosure relates in particular to coatings of optical elements in order to increase or reduce the reflectivity.
    Type: Application
    Filed: July 24, 2017
    Publication date: November 9, 2017
    Inventors: Vladimir Kamenov, Daniel Kraehmer, Toralf Gruner, Karl-Stefan Weissenrieder, Heiko Feldmann, Achim Zirkel, Alexandra Pazidis, Bruno Thome, Stephan Six
  • Publication number: 20170284893
    Abstract: A device including an imaging optical unit (9) imaging an object field (5) in an image field (10), a structured mask (7), arranged in the region of the object field (5) via reticle holder (8) displaceable in a reticle scanning direction (21), and a sensor apparatus (25), arranged in the region of the image field (10) via a substrate holder (13) displaceable in a substrate scanning direction (22). The mask (7) has at least one measurement structure (27; 33) to be imaged on the sensor apparatus (25), wherein the sensor apparatus (25) includes at least one sensor row (28) with a multiplicity of sensor elements (29), and affords the possibility of testing the imaging optical unit (9) during the displacement of the substrate holder (13) for exposing a substrate (12) arranged on the substrate holder.
    Type: Application
    Filed: February 10, 2017
    Publication date: October 5, 2017
    Inventors: Rolf FREIMANN, Heiko FELDMANN
  • Patent number: 9733395
    Abstract: The disclosure relates to a microlithographic projection exposure apparatus, such as are used for the production of large-scale integrated electrical circuits and other microstructured components. The disclosure relates in particular to coatings of optical elements in order to increase or reduce the reflectivity.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: August 15, 2017
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Vladimir Kamenov, Daniel Kraehmer, Toralf Gruner, Karl-Stefan Weissenrieder, Heiko Feldmann, Achim Zirkel, Alexandra Pazidis, Bruno Thome, Stephan Six
  • Publication number: 20170192362
    Abstract: Microlithography projection objectives for imaging into an image plane a pattern arranged in an object plane are described with respect to suppressing false light in such projection objectives.
    Type: Application
    Filed: January 24, 2017
    Publication date: July 6, 2017
    Inventors: Heiko Feldmann, Daniel Kraehmer, Jean-Claude Perrin, Julian Kaller, Aurelian Dodoc, Vladimir Kamenov, Olaf Conradi, Toralf Gruner, Thomas Okon, Alexander Epple
  • Patent number: 9658533
    Abstract: A mirror for EUV radiation comprises a total reflection surface, which has a first EUV-radiation-reflecting region and at least one second EUV-radiation-reflecting region, wherein the EUV-radiation-reflecting regions are structurally delimited from one another, wherein the first region comprises at least one first partial reflection surface which is surrounded along a circumference in each case by the at least one second region, and wherein the at least one second EUV-radiation-reflecting region comprises at least one second partial reflection surface which is embodied in a path-connected fashion and which is embodied in a continuous fashion.
    Type: Grant
    Filed: May 5, 2014
    Date of Patent: May 23, 2017
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Johannes Ruoff, Heiko Feldmann, Michael Layh
  • Patent number: 9651872
    Abstract: A projection lens for imaging a pattern arranged in an object plane of the projection lens into an image plane of the projection lens via electromagnetic radiation having an operating wavelength ?<260 nm has a multiplicity of optical elements having optical surfaces which are arranged in a projection beam path between the object plane and the image plane. Provision is made of a wavefront manipulation system for dynamically influencing the wavefront of the projection radiation passing from the object plane to the image plane.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: May 16, 2017
    Assignee: Carl Zeiss SMT GmbH
    Inventor: Heiko Feldmann
  • Patent number: 9581813
    Abstract: The invention relates to a method for improving the imaging properties of a micro lithography projection objective, wherein the projection objective has a plurality of lenses between an object plane and an image plane, a first lens of the plurality of lenses being assigned a first manipulator for actively deforming the lens, the first lens being deformed for at least partially correcting an aberration, at least one second lens of the plurality of lenses furthermore being assigned at least one second manipulator, and the second lens being deformed in addition to the first lens. Furthermore, a method is described for selecting at least one lens of a plurality of lenses of a projection objective as actively deformable element, and a projection objective.
    Type: Grant
    Filed: June 1, 2015
    Date of Patent: February 28, 2017
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Olaf Conradi, Heiko Feldmann, Gerald Richter, Sascha Bleidistel, Andreas Frommeyer, Toralf Gruner, Wolfgang Hummel
  • Patent number: 9568394
    Abstract: A device including an imaging optical unit (9) imaging an object field (5) in an image field (10), a structured mask (7), arranged in the region of the object field (5) via reticle holder (8) displaceable in a reticle scanning direction (21), and a sensor apparatus (25), arranged in the region of the image field (10) via a substrate holder (13) displaceable in a substrate scanning direction (22). The mask (7) has at least one measurement structure (27; 33) to be imaged on the sensor apparatus (25), wherein the sensor apparatus (25) includes at least one line sensor (28) with a multiplicity of sensor elements (29), and affords the possibility of testing the imaging optical unit (9) during the displacement of the substrate holder (13) for exposing a substrate (12) arranged on the substrate holder.
    Type: Grant
    Filed: September 23, 2013
    Date of Patent: February 14, 2017
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Rolf Freimann, Heiko Feldmann
  • Patent number: 9360775
    Abstract: The disclosure relates to a method of manufacturing a projection objective, and a projection objective, such as a projection objective configured to be used in a microlithographic process. The method can include defining an initial design for the projection objective and optimizing the design using a merit function. The method can be used in the manufacturing of projection objectives which may be used in a microlithographic process of manufacturing miniaturized devices.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: June 7, 2016
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Heiko Feldmann, Toralf Gruner, Alexander Epple
  • Patent number: 9298102
    Abstract: A projection lens for imaging a pattern arranged in an object plane of the projection lens into an image plane of the projection lens via electromagnetic radiation having an operating wavelength ?<260 nm has a multiplicity of optical elements having optical surfaces which are arranged in a projection beam path between the object plane (OS) and the image plane. Provision is made of a wavefront manipulation system for dynamically influencing the wavefront of the projection radiation passing from the object plane to the image plane.
    Type: Grant
    Filed: February 6, 2014
    Date of Patent: March 29, 2016
    Assignee: Carl Zeiss SMT GmbH
    Inventor: Heiko Feldmann
  • Patent number: 9298097
    Abstract: The disclosure relates to a projection exposure apparatus for EUV microlithography which includes an illumination system for illuminating a pattern, and a projection objective for imaging the pattern onto a light-sensitive substrate. The projection objective has a pupil plane with an obscuration. The illumination system generates light with an angular distribution having an illumination pole which extends over a range of polar angles and a range of azimuth angles and within which the light intensity is greater than an illumination pole minimum value. From the illumination pole toward large polar angles a dark zone is excluded within which the light intensity is less than the illumination pole minimum value, and which has in regions a form corresponding to the form of the obscuration of the pupil plane.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: March 29, 2016
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Marc Bienert, Heiko Feldmann, Aksel Goehnermeier, Oliver Natt, Johannes Ruoff
  • Publication number: 20150370172
    Abstract: A projection lens for imaging a pattern arranged in an object plane of the projection lens into an image plane of the projection lens via electromagnetic radiation having an operating wavelength ?<260 nm has a multiplicity of optical elements having optical surfaces which are arranged in a projection beam path between the object plane and the image plane. Provision is made of a wavefront manipulation system for dynamically influencing the wavefront of the projection radiation passing from the object plane to the image plane.
    Type: Application
    Filed: August 28, 2015
    Publication date: December 24, 2015
    Inventor: Heiko Feldmann
  • Patent number: 9164396
    Abstract: A microlithographic projection exposure apparatus comprises a projection objective which images an object onto an image plane and has a lens with a curved surface. In the projection objective there is a liquid or solid medium which directly adjoins the curved surface over a region which is usable for imaging the object. The projection exposure apparatus also has an adjustable manipulator for reducing an image field curvature which is caused by heating of the medium during the projection operation.
    Type: Grant
    Filed: October 25, 2012
    Date of Patent: October 20, 2015
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Helmut Beierl, Sascha Bleidistel, Wolfgang Singer, Toralf Gruner, Alexander Epple, Norbert Wabra, Susanne Beder, Jochen Weber, Heiko Feldmann, Baerbel Schwaer, Olaf Rogalsky, Arif Kazi
  • Publication number: 20150293352
    Abstract: The invention relates to a method for improving the imaging properties of a micro lithography projection objective, wherein the projection objective has a plurality of lenses between an object plane and an image plane, a first lens of the plurality of lenses being assigned a first manipulator for actively deforming the lens, the first lens being deformed for at least partially correcting an aberration, at least one second lens of the plurality of lenses furthermore being assigned at least one second manipulator, and the second lens being deformed in addition to the first lens. Furthermore, a method is described for selecting at least one lens of a plurality of lenses of a projection objective as actively deformable element, and a projection objective.
    Type: Application
    Filed: June 1, 2015
    Publication date: October 15, 2015
    Inventors: Olaf Conradi, Heiko Feldmann, Gerald Richter, Sascha Bleidistel, Andreas Frommeyer, Toralf Gruner, Wolfgang Hummel
  • Patent number: 9158205
    Abstract: The disclosure relates to an optical arrangement for three-dimensionally patterning a radiation-sensitive material layer, such as a projection exposure apparatus for microlithography. The optical arrangement includes a mask for forming a three-dimensional radiation pattern, a substrate with the radiation-sensitive material layer, and a projection optical unit for imaging the three-dimensional radiation pattern from the mask into the radiation-sensitive material layer. The optical arrangement is designed to compensate for spherical aberrations along the thickness direction of the radiation-sensitive material layer in order to generate a stigmatic image of the three-dimensional radiation pattern.
    Type: Grant
    Filed: October 29, 2014
    Date of Patent: October 13, 2015
    Assignee: Carl Zeiss SMT GmbH
    Inventor: Heiko Feldmann
  • Patent number: 9104026
    Abstract: The present invention relates to an optical imaging device, in particular for microscopy, with a first optical element group and a second optical element group, wherein the first optical element group and the second optical element group, on an image plane, form an image of an object point of an object plane. The first optical element group includes a first optical element with a reflective first optical surface and a second optical element with a reflective second optical surface. The second optical element group includes a third optical element with a reflective third optical surface. The first optical element and the second optical element are formed and arranged such that on formation of the image of the object point, in each case a multiple reflection of at least one imaging beam takes place on the first optical surface and the second optical surface.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: August 11, 2015
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Alexander Epple, Ella Mizkewicz, Heiko Feldmann
  • Patent number: 9097984
    Abstract: Microlithography projection objectives for imaging into an image plane a pattern arranged in an object plane are described with respect to suppressing false light in such projection objectives.
    Type: Grant
    Filed: July 22, 2014
    Date of Patent: August 4, 2015
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Heiko Feldmann, Daniel Kraehmer, Jean-Claude Perrin, Julian Kaller, Aurelian Dodoc, Vladimir Kamenov, Olaf Conradi, Toralf Gruner, Thomas Okon, Alexander Epple
  • Patent number: 9069263
    Abstract: The invention relates to a method for improving the imaging properties of a micro lithography projection objective, wherein the projection objective has a plurality of lenses between an object plane and an image plane, a first lens of the plurality of lenses being assigned a first manipulator (ml, Mn) for actively deforming the lens, the first lens being deformed for at least partially correcting an aberration, at least one second lens of the plurality of lenses furthermore being assigned at least one second manipulator, and the second lens being deformed in addition to the first lens. Furthermore, a method is described for selecting at least one lens of a plurality of lenses of a projection objective as actively deformable element, and a projection objective.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: June 30, 2015
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Olaf Conradi, Heiko Feldmann, Gerald Richter, Sascha Bleidistel, Andreas Frommeyer, Toralf Gruner, Wolfgang Hummel
  • Publication number: 20150098071
    Abstract: The disclosure relates to an optical arrangement for three-dimensionally patterning a radiation-sensitive material layer, such as a projection exposure apparatus for microlithography. The optical arrangement includes a mask for forming a three-dimensional radiation pattern, a substrate with the radiation-sensitive material layer, and a projection optical unit for imaging the three-dimensional radiation pattern from the mask into the radiation-sensitive material layer. The optical arrangement is designed to compensate for spherical aberrations along the thickness direction of the radiation-sensitive material layer in order to generate a stigmatic image of the three-dimensional radiation pattern.
    Type: Application
    Filed: October 29, 2014
    Publication date: April 9, 2015
    Inventor: Heiko Feldmann