Patents by Inventor Heiko Feldmann

Heiko Feldmann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100290024
    Abstract: The invention relates to a method-for improving the imaging properties of a micro lithography projection objective, wherein the projection objective has a plurality of lenses between an object plane and an image plane, a first lens of the plurality of lenses being assigned a first manipulator (ml, Mn) for actively deforming the lens, the first lens being deformed for at least partially correcting an aberration, at least one second lens of the plurality of lenses furthermore being assigned at least one second manipulator, and the second lens being deformed in addition to the first lens. Furthermore, a method is described for selecting at least one lens of a plurality of lenses of a projection objective as actively deformable element, and a projection objective.
    Type: Application
    Filed: July 14, 2010
    Publication date: November 18, 2010
    Applicant: CARL ZEISS SMT AG
    Inventors: Olaf Conradi, Heiko Feldmann, Gerald Richter, Sascha Bleidistel, Andreas Frommeyer, Toralf Gruner, Wolfgang Hummel
  • Patent number: 7834981
    Abstract: A projection exposure apparatus for the exposure of a radiation-sensitive substrate arranged in the region of an image surface of a projection objective with at least one image of a pattern of a mask that is arranged in the region of an object surface of the projection objective has a light source for emitting ultraviolet light from a wavelength band having a bandwidth ??>10 pm around a central operating wavelength ?>200 nm; an illumination system for receiving the light from the light source and for directing illumination radiation onto the pattern of the mask; and a projection objective for the imaging of the structure of the mask onto a light-sensitive substrate.
    Type: Grant
    Filed: May 11, 2007
    Date of Patent: November 16, 2010
    Assignee: Carl Zeiss SMT AG
    Inventors: Hans-Juergen Rostalski, Heiko Feldmann, Wilhelm Ulrich
  • Patent number: 7835073
    Abstract: In some embodiments, a projection objective for lithography includes an optical arrangement of optical elements between an object plane and an image plane. The arrangement generally has at least one intermediate image plane, the arrangement further having at least two correction elements for correcting aberrations, of which a first correction element is arranged optically at least in the vicinity of a pupil plane and a second correction element is arranged in a region which is not optically near either a pupil plane or a field plane.
    Type: Grant
    Filed: January 15, 2008
    Date of Patent: November 16, 2010
    Assignee: Carl Zeiss SMT AG
    Inventors: Heiko Feldmann, Susanne Beder, Aurelian Dodoc, Alexander Epple, Hans-Juergen Rostalski
  • Publication number: 20100265478
    Abstract: A microlithographic projection exposure apparatus comprises a projection objective which images an object onto an image plane and has a lens with a curved surface. In the projection objective there is a liquid or solid medium which directly adjoins the curved surface over a region which is usable for imaging the object. The projection exposure apparatus also has an adjustable manipulator for reducing an image field curvature which is caused by heating of the medium during the projection operation.
    Type: Application
    Filed: June 28, 2010
    Publication date: October 21, 2010
    Applicant: CARL ZEISS SMT AG
    Inventors: Helmut Beierl, Sascha Bleidistel, Wolfgang Singer, Toralf Gruner, Alexander Epple, Norbert Wabra, Susanne Beder, Jochen Weber, Heiko Feldmann, Bärbel Schwaer, Olaf Rogalsky, Arif Kazi
  • Patent number: 7800732
    Abstract: A projection exposure method for the exposure of a radiation-sensitive substrate arranged in the region of an image surface of a projection objective with at least one image of a pattern of a mask arranged in the region of an object surface of the projection objective includes exposing the substrate with the image of the pattern in an effective image field of the projection objective during an exposure time interval and also altering a relative positioning between a surface of the substrate and a focus surface of the projection objective during the exposure time interval in such a way that image points in the effective image field are exposed with different focus positions of the image of the mask during the exposure time interval.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: September 21, 2010
    Assignee: Carl Zeiss SMT AG
    Inventors: Joerg Zimmermann, Heiko Feldmann, Tilmann Heil, Paul Graeupner, Ulrich Gebhardt
  • Publication number: 20100214565
    Abstract: An imaging microoptics, which is compact and robust, includes at least one aspherical member and has a folded beam path. The imaging microoptics provides a magnification |??| of >800 by magnitude. Furthermore, a system for positioning a wafer with respect to a projection optics includes the imaging microoptics, an image sensor positionable in the image plane of the imaging microoptics, for measuring a position of an aerial image of the projection optics, and a wafer stage with an actuator and a controller for positioning the wafer in dependence of an output signal of the image sensor.
    Type: Application
    Filed: March 12, 2010
    Publication date: August 26, 2010
    Applicant: CARL ZEISS SMT AG
    Inventors: Hans-Juergen Rostalski, Heiko Feldmann
  • Patent number: 7782440
    Abstract: A microlithographic projection exposure apparatus comprises a projection objective which images an object onto an image plane and has a lens with a curved surface. In the projection objective there is a liquid or solid medium which directly adjoins the curved surface over a region which is usable for imaging the object. The projection exposure apparatus also has an adjustable manipulator for reducing an image field curvature which is caused by heating of the medium during the projection operation.
    Type: Grant
    Filed: November 17, 2005
    Date of Patent: August 24, 2010
    Assignee: Carl Zeiss SMT AG
    Inventors: Helmut Beierl, Sascha Bleidistel, Wolfgang Singer, Toralf Gruner, Alexander Epple, Norbert Wabra, Susanne Beder, Jochen Weber, Heiko Feldmann, Baerbel Schwaer, Olaf Rogalsky, Ari Kazi
  • Patent number: 7777963
    Abstract: The invention relates to a method -for improving the imaging properties of a micro lithography projection objective (50), wherein the projection objective has a plurality of lenses (L1, L2, L3, L4, L5, L6, L7, L8) between an object plane and an image plane, a first lens of the plurality of lenses being assigned a first manipulator (ml, Mn) for actively deforming the lens, the first lens being deformed for at least partially correcting an aberration, at least one second lens of the plurality of lenses furthermore being assigned at least one second manipulator, and the second lens being deformed in addition to the first lens. Furthermore, a method is described for selecting at least one lens of a plurality of lenses of a projection objective as actively deformable element, and a projection objective.
    Type: Grant
    Filed: May 24, 2006
    Date of Patent: August 17, 2010
    Assignee: Carl Zeiss SMT AG
    Inventors: Olaf Conradi, Heiko Feldmann, Gerald Richter, Sascha Bleidistel, Andreas Frommeyer, Toralf Gruner, Wolfgang Hummel
  • Publication number: 20100201959
    Abstract: A projection objective for microlithography includes at least one optical assembly with optical elements which are disposed between an object plane and an image plane. The optical assembly includes at least one optical terminal element, which is disposed close to the image plane. A first immersion liquid is disposed on the image oriented surface of the optical terminal element. A second immersion liquid is disposed on the object oriented surface of the optical terminal element. The object oriented surface includes a first surface section for the imaging light to enter into the terminal element, and the image oriented surface includes a second surface portion for the imaging light to exit from the terminal element.
    Type: Application
    Filed: March 12, 2010
    Publication date: August 12, 2010
    Applicant: CARL ZEISS SMT AG
    Inventors: Helmut Beierl, Heiko Feldmann, Jochen Hetzler, Michael Totzeck
  • Publication number: 20100188738
    Abstract: The present invention relates to an optical imaging device, in particular for microscopy, with a first optical element group and a second optical element group, wherein the first optical element group and the second optical element group, on an image plane, form an image of an object point of an object plane. The first optical element group comprises a first optical element with a reflective first optical surface and a second optical element with a reflective second optical surface. The second optical element group comprises a third optical element with a reflective third optical surface. The first optical element and the second optical element are formed and arranged such that on formation of the image of the object point, in each case a multiple reflection of at least one imaging beam takes place on the first optical surface and the second optical surface.
    Type: Application
    Filed: September 28, 2009
    Publication date: July 29, 2010
    Applicant: CARL ZEISS SMT AG
    Inventors: Alexander Epple, Ella Mizkewicz, Heiko Feldmann
  • Publication number: 20100172019
    Abstract: A reduction projection objective for projection lithography has a plurality of optical elements configured to image an effective object field arranged in an object surface of the projection objective into an effective image field arranged in an image surface of the projection objective at a reducing magnification ratio |?|<1. The optical elements form a dry objective adapted with regard to aberrations to a gaseous medium with refractive index n?<1.01 filling an image space of finite thickness between an exit surface of the projection objective and the image surface. The optical elements include a largest lens having a maximum lens diameter Dmax and are configured to provide an image-side numerical aperture NA<1 in an effective image field having a maximum image field height Y?. With COMP=Dmax/(Y?·(NA/n?)2) the condition COMP<15.8 holds.
    Type: Application
    Filed: January 4, 2010
    Publication date: July 8, 2010
    Applicant: CARL ZEISS SMT AG
    Inventors: WILHELM ULRICH, AURELIAN DODOC, HEIKO FELDMANN, HANS-JUERGEN ROSTALSKI
  • Publication number: 20100157266
    Abstract: A projection exposure method for the exposure of a radiation-sensitive substrate arranged in the region of an image surface of a projection objective with at least one image of a pattern of a mask arranged in the region of an object surface of the projection objective includes exposing the substrate with the image of the pattern in an effective image field of the projection objective during an exposure time interval and also altering a relative positioning between a surface of the substrate and a focus surface of the projection objective during the exposure time interval in such a way that image points in the effective image field are exposed with different focus positions of the image of the mask during the exposure time interval.
    Type: Application
    Filed: December 21, 2009
    Publication date: June 24, 2010
    Applicant: Carl Zeiss SMT AG
    Inventors: Joerg Zimmermann, Heiko Feldmann, Tilmann Heil, Paul Graeupner, Ulrich Gebhardt
  • Publication number: 20100149632
    Abstract: The present invention relates to an optical imaging device, in particular for microscopy, with a first optical element group and a second optical element group, wherein the first optical element group and the second optical element group, on an image plane, form an image of an object point of an object plane via at least one imaging ray having an imaging ray path. The first optical element group comprises a first optical element with a reflective first optical surface in the imaging ray path and a second optical element with a reflective second optical surface in the imaging ray path, wherein the first optical surface is concave. The second optical element group comprises a third optical element with a concave reflective third optical surface in the imaging ray path and a fourth optical element with a convex reflective fourth optical surface in the imaging ray path without light passage aperture.
    Type: Application
    Filed: September 28, 2009
    Publication date: June 17, 2010
    Applicant: CARL ZEISS SMT AG
    Inventors: Hans-Juergen Mann, Heiko Feldmann
  • Patent number: 7738188
    Abstract: A reduction projection objective for projection lithography has a plurality of optical elements configured to image an effective object field arranged in an object surface of the projection objective into an effective image field arranged in an image surface of the projection objective at a reducing magnification ratio |?|<1. The optical elements form a dry objective adapted with regard to aberrations to a gaseous medium with refractive index n?<1.01 filling an image space of finite thickness between an exit surface of the projection objective and the image surface. The optical elements include a largest lens having a maximum lens diameter Dmax and are configured to provide an image-side numerical aperture NA<1 in an effective image field having a maximum image field height Y?. With COMP=Dmax/(Y?·(NA/n?)2) the condition COMP<15.8 holds.
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: June 15, 2010
    Assignee: Carl Zeiss SMT AG
    Inventors: Wilhelm Ulrich, Aurelian Dodoc, Heiko Feldmann, Hans-Juergen Rostalski
  • Publication number: 20100134891
    Abstract: The disclosure concerns an optical system of a microlithographic projection exposure apparatus. To permit comparatively flexible and fast influencing of intensity distribution and/or the polarization state, an optical system includes at least one layer system that is at least one-side bounded by a lens or a mirror. The layer system is an interference layer system of several layers and has at least one liquid or gaseous layer portion with a maximum thickness of one micrometer (?m), and a manipulator for manipulation of the thickness profile of the layer portion.
    Type: Application
    Filed: January 14, 2010
    Publication date: June 3, 2010
    Applicant: CARL ZEISS SMT AG
    Inventors: Ralf Mueller, Toralf Gruner, Michael Totzeck, Heiko Feldmann, Hans-Jochen Paul
  • Patent number: 7728975
    Abstract: In a method for describing, evaluating and improving optical polarization properties of a projection objective of a microlithographic projection exposure apparatus, the Jones or Stokes vectors are firstly determined at one or more points in the exit pupil of the projection objective. These are then described at least approximately as a linear superposition of predetermined vector modes with scalar superposition coefficients. The optical polarization properties can subsequently be evaluated on the basis of the superposition coefficients.
    Type: Grant
    Filed: February 22, 2006
    Date of Patent: June 1, 2010
    Assignee: Carl Zeiss SMT AG
    Inventors: Michael Totzeck, Heiko Feldmann, Daniel Kraehmer, Olaf Dittmann
  • Publication number: 20100128240
    Abstract: An objective having a plurality of optical elements arranged to image a pattern from an object field in an object surface of the objective to an image field in an image surface region of the objective at an image-side numerical aperture NA>0.8 with electromagnetic radiation from a wavelength band around a wavelength ?, includes a number N of dioptric optical elements, each dioptric optical element i made from a transparent material having a normalized optical dispersion ?ni=ni(?0)?ni(?0+1 pm) for a wavelength variation of 1 pm from a wavelength ?0. The objective satisfies the relation ? ? i = 1 N ? ? ? ? n i ? ( s i - d i ) ? ? 0 ? NA 4 ? A for any ray of an axial ray bundle originating from a field point on an optical axis in the object field, where si is a geometrical path length of a ray in an ith dioptric optical element having axial thickness di and the sum extends on all dioptric optical elements of the objective. Where A=0.
    Type: Application
    Filed: November 18, 2009
    Publication date: May 27, 2010
    Applicant: Carl Zeiss SMT AG
    Inventors: Alexander Epple, Heiko Feldmann, Hans-Juergen Rostalski
  • Publication number: 20100112465
    Abstract: The disclosure relates to an optical arrangement for three-dimensionally patterning a radiation-sensitive material layer, such as a projection exposure apparatus for microlithography. The optical arrangement includes a mask for forming a three-dimensional radiation pattern, a substrate with the radiation-sensitive material layer, and a projection optical unit for imaging the three-dimensional radiation pattern from the mask into the radiation-sensitive material layer. The optical arrangement is designed to compensate for spherical aberrations along the thickness direction of the radiation-sensitive material layer in order to generate a stigmatic image of the three-dimensional radiation pattern.
    Type: Application
    Filed: October 28, 2009
    Publication date: May 6, 2010
    Applicant: Carl Zeiss SMT AG
    Inventor: Heiko Feldmann
  • Patent number: 7710640
    Abstract: A projection objective for a microlithographic projection exposure apparatus. The projection objective can project an image of a mask that can be set in position in an object plane onto a light-sensitive coating layer that can be set in position in an image plane. The projection objective can be designed to operate in an immersion mode, and it can produce at least one intermediate image. The projection objective can include an optical subsystem on the image-plane side which projects the intermediate image into the image plane with an image-plane-side projection ratio having an absolute value of at least 0.3.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: May 4, 2010
    Assignee: Carl Zeiss SMT AG
    Inventors: Susanne Beder, Daniel Kraehmer, Heiko Feldmann
  • Patent number: 7697211
    Abstract: The invention features a system for microlithography that includes a mercury light source configured to emit radiation at multiple mercury emission lines, a projection objective positioned to receive radiation emitted by the mercury light source, and a stage configured to position a wafer relative to the projection objective. During operation, the projection objective directs radiation from the light source to the wafer, where the radiation at the wafer includes energy from more than one of the emission lines. Optical lens systems for use in said projection objective comprise four lens groups, each having two lenses comprising silica, the first and second lens groups on one hand and the third and fourth lens groups on the other hand are positioned symmetrically with respect to a plane perpendicular to the optical axis of said lens system.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: April 13, 2010
    Assignee: Carl Zeiss SMT AG
    Inventors: David R. Shafer, Aurelian Dodoc, Johannes Zellner, Heiko Feldmann, Wilhelm Ulrich, Holger Walter, Ulrich Loering, Daniel Kraehmer, Gerhard Fuerter