Patents by Inventor Heinz Schuster

Heinz Schuster has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8068279
    Abstract: The disclosure relates to an optical system of an illumination device of a microlithographic projection exposure apparatus, including at least one first light-conductance-increasing element having a plurality of diffractively or refractively beam-deflecting structures extending in a common first preferred direction the light-conductance-increasing element having an optically uniaxial crystal material in such a way that the optical crystal axis of the crystal material is substantially parallel or substantially perpendicular to the first preferred direction.
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: November 29, 2011
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Karl-Heinz Schuster, Juergen Hartmaier, Manfred Maul, Dieter Schmerek, Detlev Mueller, Otto Hahnemann, Frank Marianek, Gundula Weiss, Damian Fiolka
  • Patent number: 8049973
    Abstract: In certain aspects, the disclosure relates to a projection objective, in particular for a microlithography exposure apparatus, serving to project an image of an object field in an object plane onto an image field in an image plane. The projection objective includes a system aperture stop and refractive and/or reflective optical elements that are arranged relative to an optical system axis. The centroid of the image field is arranged at a lateral distance from the optical system axis). The system aperture stop has an inner aperture stop border which encloses an aperture stop opening and whose shape is defined by a border contour curve. The border contour curve runs at least in part outside of a plane that spreads orthogonally to the optical system axis.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: November 1, 2011
    Assignee: Carl Zeiss SMT GmbH
    Inventor: Karl-Heinz Schuster
  • Publication number: 20110235013
    Abstract: A projection objective of a microlithographic projection exposure apparatus has a high index refractive optical element with an index of refraction greater than 1.6. This element has a volume and a material related optical property which varies over the volume. Variations of this optical property cause an aberration of the objective. In one embodiment at least 4 optical surfaces are provided that are arranged in at least one volume which is optically conjugate with the volume of the refractive optical element. Each optical surface comprises at least one correction means, for example a surface deformation or a birefringent layer with locally varying properties, which at least partially corrects the aberration caused by the variation of the optical property.
    Type: Application
    Filed: June 9, 2011
    Publication date: September 29, 2011
    Applicant: CARL ZEISS SMT GMBH
    Inventors: Karl-Heinz Schuster, Heiko Feldmann, Toralf Gruner, Michael Totzeck, Wilfried Clauss, Susanne Beder, Daniel Kraehmer, Olaf Dittmann
  • Patent number: 8023104
    Abstract: Microlithographic projection exposure apparatuses, as well as related components, subsystems and methods are disclosed.
    Type: Grant
    Filed: January 9, 2008
    Date of Patent: September 20, 2011
    Assignee: Carl Zeiss SMT GmbH
    Inventor: Karl-Heinz Schuster
  • Patent number: 7982969
    Abstract: A projection objective of a microlithographic projection exposure apparatus has a high index refractive optical element with an index of refraction greater than 1.6. This element has a volume and a material related optical property which varies over the volume. Variations of this optical property cause an aberration of the objective. In one embodiment at least 4 optical surfaces are provided that are arranged in at least one volume which is optically conjugate with the volume of the refractive optical element. Each optical surface comprises at least one correction means, for example a surface deformation or a birefringent layer with locally varying properties, which at least partially corrects the aberration caused by the variation of the optical property.
    Type: Grant
    Filed: December 9, 2008
    Date of Patent: July 19, 2011
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Karl-Heinz Schuster, Heiko Feldmann, Toralf Gruner, Michael Totzeck, Wilfried Clauss, Susanne Beder, Daniel Kraehmer, Olaf Dittmann
  • Patent number: 7977651
    Abstract: There is provided a projection objective for a projection exposure apparatus that has a primary light source for emitting electromagnetic radiation having a chief ray with a wavelength?193 nm. The projection objective includes an object plane, a first mirror, a second mirror, a third mirror, a fourth mirror; and an image plane. The object plane, the first mirror, the second mirror, the third mirror, the fourth mirror and the image plane are arranged in a centered arrangement around a common optical axis. The first mirror, the second mirror, the third mirror, and the fourth mirror are situated between the object plane and the image plane. The chief ray, when incident on an object situated in the object plane, in a direction from the primary light source, is inclined away from the common optical axis.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: July 12, 2011
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Hans-Juergen Mann, Wolfgang Singer, Joerg Schultz, Johannes Wangler, Karl-Heinz Schuster, Udo Dinger, Martin Antoni, Wilhelm Ulrich
  • Patent number: 7787177
    Abstract: A projection objective for imaging a pattern provided in an object surface onto an image surface of the projection objective has an object-side imaging subsystem for creating a final intermediate image closest to the image surface from radiation coming from the object surface and an image-side imaging subsystem for directly imaging the final intermediate image onto the image surface. The image-side imaging subsystem includes at least one aspheric primary correcting lens having an aspheric primary correcting surface. The object-side imaging subsystem includes a secondary correcting group having at least one secondary correcting lens having an aspheric secondary correcting surface. Conditions involving maximum incidence angles and subaperture offsets at the correcting surfaces are given which should be observed to obtain sufficient aberration correction at very high image-side numerical apertures NA.
    Type: Grant
    Filed: February 6, 2008
    Date of Patent: August 31, 2010
    Assignee: Carl Zeiss SMT AG
    Inventor: Karl-Heinz Schuster
  • Publication number: 20100214551
    Abstract: In certain aspects, the disclosure relates to a projection objective, in particular for a microlithography exposure apparatus, serving to project an image of an object field in an object plane onto an image field in an image plane. The projection objective includes a system aperture stop and refractive and/or reflective optical elements that are arranged relative to an optical system axis. The centroid of the image field is arranged at a lateral distance from the optical system axis). The system aperture stop has an inner aperture stop border which encloses an aperture stop opening and whose shape is defined by a border contour curve. The border contour curve runs at least in part outside of a plane that spreads orthogonally to the optical system axis.
    Type: Application
    Filed: May 7, 2010
    Publication date: August 26, 2010
    Applicant: CARL ZEISS SMT AG
    Inventor: Karl-Heinz Schuster
  • Patent number: 7782538
    Abstract: A projection objective for imaging a pattern provided in an object plane of the projection objective onto an image plane of the projection objective suitable for microlithography projection exposure machines has a plurality of optical elements transparent for radiation at an operating wavelength of the projection objective. At least one optical element is a high-index optical element made from a high-index material with a refractive index n?1.6 at the operating wavelength.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: August 24, 2010
    Assignee: Carl Zeiss SMT AG
    Inventors: Susanne Beder, Wolfgang Singer, Karl-Heinz Schuster
  • Patent number: 7764427
    Abstract: An optical system, such as, for example, an illumination system or a projection lens of a microlithographic exposure system. The optical system can have an optical axis and include at least one optical element that includes an optically uniaxial material having, for an operating wavelength of the optical system, an ordinary refractive index no and an extraordinary refractive index ne. The extraordinary refractive index ne can be larger than the ordinary refractive index no. The optical element can absorb, at least for light rays of the operating wavelength entering the optical element with respect to the optical axis under an angle of incidence that lies within a certain angle region, a p-polarized component of the light rays significantly stronger than a s-polarized component of the light rays.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: July 27, 2010
    Assignee: Carl Zeiss SMT AG
    Inventor: Karl-Heinz Schuster
  • Patent number: 7755839
    Abstract: Very high aperture microlithography projection objectives operating at the wavelengths of 248 nm, 193 nm and also 157 nm, suitable for optical immersion or near-field operation with aperture values that can exceed 1.4 are made feasible with crystalline lenses and crystalline end plates P of NaCl, KCl, KI, RbI, CsI, and MgO, YAG with refractive indices up to and above 2.0. These crystalline lenses and end plates are placed between the system aperture stop AS and the wafer W, preferably as the last lenses on the image side of the objective.
    Type: Grant
    Filed: December 15, 2004
    Date of Patent: July 13, 2010
    Assignee: Carl Zeiss SMT AG
    Inventors: Karl-Heinz Schuster, Wilfried Clauss
  • Patent number: 7751127
    Abstract: In certain aspects, the disclosure relates to a projection objective, in particular for a microlithography exposure apparatus, serving to project an image of an object field in an object plane onto an image field in an image plane. The projection objective includes a system aperture stop and refractive and/or reflective optical elements that are arranged relative to an optical system axis. The centroid of the image field is arranged at a lateral distance from the optical system axis). The system aperture stop has an inner aperture stop border which encloses an aperture stop opening and whose shape is defined by a border contour curve. The border contour curve runs at least in part outside of a plane that spreads orthogonally to the optical system axis.
    Type: Grant
    Filed: February 15, 2008
    Date of Patent: July 6, 2010
    Assignee: Carl Zeiss SMT AG
    Inventor: Karl-Heinz Schuster
  • Publication number: 20100141912
    Abstract: A microlithographic projection exposure apparatus includes a projection lens that is configured for immersion operation. For this purpose an immersion liquid is introduced into an immersion space that is located between a last lens of the projection lens on the image side and a photosensitive layer to be exposed. To reduce fluctuations of refractive index resulting from temperature gradients occurring within the immersion liquid, the projection exposure apparatus includes heat transfer elements that heat or cool partial volumes of the immersion liquid so as to achieve an at least substantially homogenous or at least substantially rotationally symmetric temperature distribution within the immersion liquid.
    Type: Application
    Filed: February 9, 2010
    Publication date: June 10, 2010
    Applicant: CARL ZEISS SMT AG
    Inventors: Albrecht Ehrmann, Ulrich Wegmann, Rainer Hoch, Joerg Mallmann, Karl-Heinz Schuster, Ulrich Loering, Toralf Gruner, Bernhard Kneer, Bernhard Geuppert, Franz Sorg, Jens Kugler, Norbert Wabra
  • Patent number: 7697198
    Abstract: A catadioptric projection objective for projecting a pattern arranged in the object plane of the projection objective into the image plane of the projection objective, having: a first objective part for projecting an object field lying in the object plane into a first real intermediate image; a second objective part for generating a second real intermediate image with the radiation coming from the first objective part; a third objective part for generating a third real intermediate image with the radiation coming from the second objective part; and a fourth objective part for projecting the third real intermediate image into the image plane.
    Type: Grant
    Filed: October 15, 2004
    Date of Patent: April 13, 2010
    Assignee: Carl Zeiss SMT AG
    Inventors: David Shafer, Alexander Epple, Aurelian Dodoc, Wilhelm Ulrich, Karl-Heinz Schuster
  • Publication number: 20100045952
    Abstract: A microlithographic projection exposure apparatus contains an illumination system (12) for generating projection light (13) and a projection lens (20; 220; 320; 420; 520; 620; 720; 820; 920; 1020; 1120) with which a reticle (24) that is capable of being arranged in an object plane (22) of the projection lens can be imaged onto a light-sensitive layer (26) that is capable of being arranged in an image plane (28) of the projection lens. The projection lens is designed for immersion mode, in which a final lens element (L5; L205; L605; L705; L805; L905; L1005; L1105) of the projection lens on the image side is immersed in an immersion liquid (34; 334a; 434a; 534a). A terminating element (44; 244; 444; 544; 644; 744; 844; 944; 1044; 1144) that is transparent in respect of the projection light (13) is fastened between the final lens element on the image side and the light-sensitive layer.
    Type: Application
    Filed: November 4, 2009
    Publication date: February 25, 2010
    Applicant: CARL ZEISS SMT AG
    Inventors: Aurelian Dodoc, Karl Heinz Schuster, Joerg Mallmann, Wilhelm Ulrich, Hans-Juergen Rostalski
  • Publication number: 20090316128
    Abstract: There is provided a projection objective for a projection exposure apparatus that has a primary light source for emitting electromagnetic radiation having a chief ray with a wavelength?193 nm. The projection objective includes an object plane, a first mirror, a second mirror, a third mirror, a fourth mirror; and an image plane. The object plane, the first mirror, the second mirror, the third mirror, the fourth mirror and the image plane are arranged in a centered arrangement around a common optical axis. The first mirror, the second mirror, the third mirror, and the fourth mirror are situated between the object plane and the image plane. The chief ray, when incident on an object situated in the object plane, in a direction from the primary light source, is inclined away from the common optical axis.
    Type: Application
    Filed: August 25, 2009
    Publication date: December 24, 2009
    Applicant: CARL ZEISS SMT AG
    Inventors: Hans-Juergen Mann, Wolfgang Singer, Joerg Schultz, Johannes Wangler, Karl-Heinz Schuster, Udo Dinger, Martin Antoni, Wilhelm Ulrich
  • Publication number: 20090296204
    Abstract: A projection objective for imaging a pattern provided in an object surface onto an image surface of the projection objective has an object-side imaging subsystem for creating a final intermediate image closest to the image surface from radiation coming from the object surface and an image-side imaging subsystem for directly imaging the final intermediate image onto the image surface. The image-side imaging subsystem includes at least one aspheric primary correcting lens having an aspheric primary correcting surface. The object-side imaging subsystem includes a secondary correcting group having at least one secondary correcting lens having an aspheric secondary correcting surface. Conditions involving maximum incidence angles and subaperture offsets at the correcting surfaces are given which should be observed to obtain sufficient aberration correction at very high image-side numerical apertures NA.
    Type: Application
    Filed: February 6, 2008
    Publication date: December 3, 2009
    Applicant: CARL ZEISS SMT AG
    Inventor: Karl-Heinz Schuster
  • Publication number: 20090284831
    Abstract: A projection objective of a microlithographic projection exposure apparatus has a high index refractive optical element (L3) with an index of refraction greater than 1.6. This element (L3) has a volume and a material related optical property which varies over the volume. Variations of this optical property cause an aberration of the objective. In one embodiment at least 4 optical surfaces are provided that are arranged in at least one volume (L3?) which is optically conjugate with the volume of the refractive optical element. Each optical surface comprises at least one correction means, for example a surface deformation or a birefringent layer with locally varying properties, which at least partially corrects the aberration caused by the variation of the optical property.
    Type: Application
    Filed: December 9, 2008
    Publication date: November 19, 2009
    Applicant: CARL ZEISS SMT AG
    Inventors: Karl-Heinz Schuster, Heiko Feldmann, Toralf Gruner, Michael Totzeck, Wilfried Clauss, Susanne Beder, Daniel Kraehmer, Olaf Dittmann
  • Patent number: RE41350
    Abstract: An objective comprising axial symmetry, at least one curved mirror and at least one lens and two intermediate images. The objective includes two refractive partial objectives and one catadioptric partial objective. The objective includes a first partial objective, a first intermediate a image, a second partial objective, a second intermediate image, and a third partial objective. At least one of the partial objectives is purely refractive. One of the partial objectives is purely refractive and one is purely catoptric.
    Type: Grant
    Filed: July 15, 2005
    Date of Patent: May 25, 2010
    Assignee: Carl Zeiss SMT AG
    Inventors: David R. Shafer, Alois Herkommer, Karl-Heinz Schuster, Gerd Füerter, Rudolph Von Büenau, Wilhelm Ulrich
  • Patent number: RE42570
    Abstract: An aspheric reduction objective has a catadioptric partial objective (L1), an intermediate image (IMI) and a refractive partial objective (L2). The catadioptric partial objective has an assembly centered to the optical axis and this assembly includes two mutually facing concave mirrors (M1, M2). The cutouts in the mirrors (B1, B2) lead to an aperture obscuration which can be held to be very small by utilizing lenses close to the mirrors and having a high negative refractive power and aspheric lens surfaces (27, 33). The position of the entry and exit pupils can be corrected with aspherical lens surfaces (12, 48, 53) in the field lens groups. The number of spherical lenses in the refractive partial objective can be reduced with aspherical lens surfaces (66, 78) arranged symmetrically to the diaphragm plane. Neighboring aspheric lens surfaces (172, 173) form additional correction possibilities.
    Type: Grant
    Filed: October 7, 2005
    Date of Patent: July 26, 2011
    Assignee: Carl Zeiss SMT GmbH
    Inventor: Karl Heinz Schuster