Patents by Inventor Hideo Hosono

Hideo Hosono has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220143580
    Abstract: A molded sintered body containing a mayenite type compound, an inorganic binder sintered material, and a transition metal, wherein a content of the inorganic binder sintered material is 3 to 30 parts by mass with respect to 100 parts by mass of the molded sintered body, and the molded sintered body has at least one pore peak in each of a pore diameter range of 2.5 to 20 nm and a pore diameter range of 20 to 350 nm. A method for producing the molded sintered body, including mixing a precursor of a mayenite type compound and a raw material of an inorganic binder sintered material to prepare a mixture; molding the mixture to prepare a molded body of the mixture; firing the molded body to prepare a fired product; and supporting a transition metal on the fired product to produce a molded sintered body.
    Type: Application
    Filed: February 26, 2020
    Publication date: May 12, 2022
    Applicants: Tsubame BHB Co., Ltd., Tokyo Institute of Technology
    Inventors: Yasunori INOUE, Munenobu ITO, Kazuhisa KISHIDA, Hideo HOSONO, Masaaki KITANO, Toshiharu YOKOYAMA
  • Publication number: 20220126276
    Abstract: The invention provides a catalyst for ammonia synthesis which has a high ammonia synthesis activity even at a low reaction temperature and a low reaction pressure and shows no decrease in the catalytic activity even when the synthesis reaction is repeated. The catalyst for ammonia synthesis comprises a metal supported material containing a transition metal and a support for supporting the transition metal. The support contains a metal hydride represented by XHn and an F ion. In the formula, X represents at least one kind selected from the group consisting of atoms of Group 2 and Group 3 of the periodic table, and lanthanoid atoms; and n represents a number represented by 2?n?3.
    Type: Application
    Filed: October 21, 2021
    Publication date: April 28, 2022
    Inventors: Michikazu HARA, Hideo HOSONO, Masashi HATTORI
  • Patent number: 11267720
    Abstract: Provided is a manufacturing method with which it is possible to convert a mayenite-type compound to an electride, wherein a reducing agent is not required, reaction conditions include a temperature that is lower than that in the related art, and the reaction is performed more quickly in a simple manner, and, additionally, by requiring a lower amount of energy. Provided is a method for manufacturing an electride of mayenite-type compounds, the method being characterized in that a mayenite-type compound is converted to an electride by making a current directly flow through the mayenite-type compound by applying a voltage to the mayenite-type compound in a heating state.
    Type: Grant
    Filed: July 25, 2017
    Date of Patent: March 8, 2022
    Assignee: JAPAN SCIENCE AND TECHNOLOGY AGENCY
    Inventors: Hideo Hosono, Toshiharu Yokoyama, Yoshitake Toda, Shintaro Ishiyama
  • Publication number: 20220048782
    Abstract: The invention provides a perovskite-type oxynitride hydride which can be easily synthesized by achieving both improvement in catalytic performance and stabilization when used as a support of a catalyst. The oxynitride hydride is represented by general formula (1a) or (1b). ABO3-xNyHz??(1a) AB2O4-xNyHz??(1b) (In the above general formulas (1 a) and (1 b), A is at least one selected from the group consisting of Ba and Sr; B is at least one selected from the group consisting of Ce, La and Y; x represents a number represented by 0.2?x?2.0; y represents a number represented by 0.1?y?1.0; and z represents a number represented by 0.1?z?1.0.
    Type: Application
    Filed: February 26, 2020
    Publication date: February 17, 2022
    Applicant: JAPAN SCIENCE AND TECHNOLOGY AGENCY
    Inventors: Masaaki KITANO, Hideo HOSONO, Toshiharu YOKOYAMA, Jun KUJIRAI
  • Patent number: 11235310
    Abstract: Provided is a method for manufacturing a catalyst with which it is possible to obtain a supported metal ammonia synthesis catalyst, in which there are restrictions in terms of producing method and producing facility, and particularly large restrictions for industrial-scale producing, in a more simple manner and so that the obtained catalyst has a high activity. This method for manufacturing an ammonia synthesis catalyst includes: a first step for preparing 12CaO.7Al2O3 having a specific surface area of 5 m2/g or above; a second step for supporting a ruthenium compound on the 12CaO.7Al2O3; and a third step for performing a reduction process on the 12CaO.7Al2O3 supporting the ruthenium compound, obtained in the second step. This invention is characterized in that the reduction process is performed until the average particle diameter of the ruthenium after the reduction process has increased by at least 15% in relation to the average particle diameter of the ruthenium before the reduction process.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: February 1, 2022
    Assignees: Tokyo Institute of Technology, Tsubame BHB Co., Ltd.
    Inventors: Hideo Hosono, Masaaki Kitano, Toshiharu Yokoyama, Jiang Li, Shigeki Kawamura, Kazuhisa Kishida
  • Publication number: 20210343961
    Abstract: A thin film of metal oxide includes zinc (Zn); tin (Sn); silicon (Si); and oxygen (O). In terms of oxide, based on 100 mol % of total of oxides of the thin film, SnO2 is greater than 15 mol % but less than or equal to 95 mol %.
    Type: Application
    Filed: January 19, 2021
    Publication date: November 4, 2021
    Applicant: JAPAN SCIENCE AND TECHNOLOGY AGENCY
    Inventors: Hideo HOSONO, Yoshitake TODA, Satoru WATANABE, Toshinari WATANABE, Kazuhiro ITO, Naomichi MIYAKAWA, Nobuhiro NAKAMURA
  • Publication number: 20210284544
    Abstract: Provided is a manufacturing method with which it is possible to convert a mayenite-type compound to an electride, wherein a reducing agent is not required, reaction conditions include a temperature that is lower than that in the related art, and the reaction is performed more quickly in a simple manner, and, additionally, by requiring a lower amount of energy. Provided is a method for manufacturing an electride of mayenite-type compounds, the method being characterized in that a mayenite-type compound is converted to an electride by making a current directly flow through the mayenite-type compound by applying a voltage to the mayenite-type compound in a heating state.
    Type: Application
    Filed: July 25, 2017
    Publication date: September 16, 2021
    Inventors: Hideo HOSONO, Toshiharu YOKOYAMA, Yoshitake TODA, Shintaro ISHIYAMA
  • Patent number: 11094909
    Abstract: A thin film of amorphous metal oxide includes zinc (Zn), silicon (Si) and oxygen (O), the atomic ratio of Zn/(Zn+Si) being 0.30 to 0.95.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: August 17, 2021
    Assignee: JAPAN SCIENCE AND TECHNOLOGY AGENCY
    Inventors: Hideo Hosono, Yoshitake Toda, Toshinari Watanabe, Naomichi Miyakawa, Kazuhiro Ito, Satoru Watanabe, Akira Mitsui, Kazuto Ohkoshi
  • Patent number: 11075303
    Abstract: An oxide semiconductor compound includes gallium; and oxygen. An optical band gap is 3.4 eV or more. An electron Hall mobility obtained by performing a Hall measurement at a temperature of 300 K is 3 cm2/Vs or more.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: July 27, 2021
    Assignees: TOKYO INSTITUTE OF TECHNOLOGY, AGC Inc.
    Inventors: Hideo Hosono, Toshio Kamiya, Hideya Kumomi, Junghwan Kim, Nobuhiro Nakamura, Satoru Watanabe, Naomichi Miyakawa
  • Publication number: 20210151710
    Abstract: A photoelectronic device includes an active layer containing inorganic particles, and an oxide semiconductor layer containing zinc (Zn), silicon (Si), and oxygen (O), where the oxide semiconductor layer and the active layer are stacked layers. The photoelectronic device further includes a multilayer transparent electrode over or under the active layer, wherein the oxide semiconductor layer serves as a part of the multilayer transparent electrode.
    Type: Application
    Filed: December 22, 2020
    Publication date: May 20, 2021
    Inventors: Hideo HOSONO, Junghwan KIM, Hideya KUMOMI
  • Patent number: 10941427
    Abstract: A production system for a product selected from a nitrogen-containing product and a fermented and cultured product that does not involve (or can minimize) the transport of liquid ammonia can include: an ammonia synthesis apparatus in which an ammonia-containing gas is synthesized by reaction of a source gas containing hydrogen and nitrogen in the presence of a supported metal catalyst containing as a support one or more selected from the group consisting of: i) a conductive mayenite compound; ii) a two-dimensional electride compound or a precursor thereof; and iii) a complex formed of a support base containing at least one metal oxide selected from ZrO2, TiO2, CeO2, and MgO and a metal amide represented by a formula M(NH2)x (where M represents one or more selected from Li, Na, K, Be, Mg, Ca, Sr, Ba, and Eu; and x represents a valence number of M) supported by the support base.
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: March 9, 2021
    Assignees: Ajinomoto Co., Inc., Tokyo Institute of Technology
    Inventors: Mitsuhiro Kishino, Hiroyuki Kojima, Hideo Hosono, Michikazu Hara, Masaaki Kitano, Toshiharu Yokoyama, Toru Numaguchi, Munenobu Ito, Kazuteru Yamada, Hiromi Noguchi
  • Publication number: 20210025063
    Abstract: An electrolytic cell capable of simply electrolyzing carbon dioxide into carbon monoxide and oxygen with low activation energy, and an electrolytic device. The carbon dioxide electrolytic cell includes a cathode, an anode, and a solid electrolyte having oxide ion conductivity. The cathode is the following (A) or (B); (A) a metal and a first mayenite-type compound are included therein or (B) a metal and a second mayenite-type compound are included therein, said second mayenite type compound including a mayenite type compound having electron conductivity.
    Type: Application
    Filed: March 28, 2019
    Publication date: January 28, 2021
    Applicant: JAPAN SCIENCE AND TECHNOLOGY AGENCY
    Inventors: Hideo HOSONO, Toshiharu YOKOYAMA, Yoshitake TODA, Shintaro ISHIYAMA, Masami TAGUCHI, Hiroki TAKAHASHI
  • Publication number: 20210016254
    Abstract: Provided is a method for manufacturing a catalyst with which it is possible to obtain a supported metal ammonia synthesis catalyst, in which there are restrictions in terms of producing method and producing facility, and particularly large restrictions for industrial-scale producing, in a more simple manner and so that the obtained catalyst has a high activity. This method for manufacturing an ammonia synthesis catalyst includes: a first step for preparing 12CaO.7Al2O3 having a specific surface area of 5 m2/g or above; a second step for supporting a ruthenium compound on the 12CaO.7Al2O3; and a third step for performing a reduction process on the 12CaO.7Al2O3 supporting the ruthenium compound, obtained in the second step. This invention is characterized in that the reduction process is performed until the average particle diameter of the ruthenium after the reduction process has increased by at least 15% in relation to the average particle diameter of the ruthenium before the reduction process.
    Type: Application
    Filed: October 1, 2020
    Publication date: January 21, 2021
    Applicants: Tokyo Institute of Technology, Tsubame BHB Co., Ltd.
    Inventors: Hideo Hosono, Masaaki Kitano, Toshiharu Yokoyama, Jiang Li, Shigeki Kawamura, Kazuhisa Kishida
  • Publication number: 20200407762
    Abstract: Provided is a novel production system that does not involve, or can minimize, the transport of liquid ammonia in the production of an organic compound or the production of a microorganism by microbial fermentation. A production system for an organic compound or a microorganism includes: an ammonia synthesis apparatus in which an ammonia-containing gas is synthesized by reaction of a source gas containing hydrogen and nitrogen in the presence of a supported ruthenium catalyst; and a culture apparatus that cultures a microorganism having organic compound productivity using ammonia originating from the ammonia-containing gas obtained by using the ammonia synthesis apparatus.
    Type: Application
    Filed: September 14, 2020
    Publication date: December 31, 2020
    Applicants: AJINOMOTO CO., INC., TOKYO INSTITUTE OF TECHNOLOGY
    Inventors: Mitsuhiro Kishino, Hiroyuki Kojima, Hideo Hosono, Michikazu Hara, Masaaki Kitano, Toshiharu Yokoyama, Toru Numaguchi, Munenobu Ito, Kazuteru Yamada, Hiromi Noguchi
  • Patent number: 10808267
    Abstract: Provided is a novel production system that does not involve, or can minimize, the transport of liquid ammonia in the production of an organic compound or the production of a microorganism by microbial fermentation. A production system for an organic compound or a microorganism includes: an ammonia synthesis apparatus in which an ammonia-containing gas is synthesized by reaction of a source gas containing hydrogen and nitrogen in the presence of a supported ruthenium catalyst; and a culture apparatus that cultures a microorganism having organic compound productivity using ammonia originating from the ammonia-containing gas obtained by using the ammonia synthesis apparatus.
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: October 20, 2020
    Assignees: Ajinomoto Co., Inc., Tokyo Institute of Technology
    Inventors: Mitsuhiro Kishino, Hiroyuki Kojima, Hideo Hosono, Michikazu Hara, Masaaki Kitano, Toshiharu Yokoyama, Toru Numaguchi, Munenobu Ito, Kazuteru Yamada, Hiromi Noguchi
  • Patent number: 10792645
    Abstract: An electride, which is more stable and can be more easily obtained, is provided or is made available, and as a result, a catalyst particularly useful for chemical synthesis, in which the electride is particularly used, is provided. A transition metal-supporting intermetallic compound having a transition metal supported on an intermetallic compound represented by the following formula (1): A5X3 . . . (1) wherein A represents a rare earth element, and X represents Si or Ge.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: October 6, 2020
    Assignees: JAPAN SCIENCE AND TECHNOLOGY AGENCY, TOKYO INSTITUTE OF TECHNOLOGY
    Inventors: Hideo Hosono, Masaaki Kitano, Tomofumi Tada, Toshiharu Yokoyama, Yoshitake Toda, Yangfan Lu, Jiang Li
  • Patent number: 10781108
    Abstract: A two-dimensional hydrogen boride-containing sheet of the present invention has a two-dimensional network that consists of (HB)n (n?4).
    Type: Grant
    Filed: October 18, 2017
    Date of Patent: September 22, 2020
    Assignees: University of Tsukuba, Tokyo Institute of Technology
    Inventors: Takahiro Kondo, Junji Nakamura, Hiroaki Nishino, Asahi Fujino, Tomohiro Fujimori, Hideo Hosono, Masahiro Miyauchi
  • Publication number: 20200287002
    Abstract: An oxide-based semiconductor compound including metal cations and oxygen, wherein hydride ions H? originally bonded with the metal cations have been replaced with fluorine ions F? and at least one of the fluorine ions F? is bonded with one to three of the metal cations.
    Type: Application
    Filed: May 20, 2020
    Publication date: September 10, 2020
    Applicants: AGC Inc., TOKYO INSTITUTE OF TECHNOLOGY
    Inventors: Hideo HOSONO, Junghwan Kim, Joonho Bang, Hideya Kumomi, Satoru Watanabe, Kazuto Ohkoshi, Naomichi Miyakawa, Nao Ishibashi, Kunio Masumo, Nobuhiro Nakamura
  • Patent number: 10759668
    Abstract: The present invention provides a supported metal catalyst, a method for synthesizing ammonia using said catalyst, and a supported metal material in which a transition metal is supported on a support, wherein the support is a metal hydride represented by general formula (1): XHn . . . (1); and in general formula (1), X represents at least one selected from the group consisting of atoms from Groups 2 and 3, and lanthanoid atoms, and n is in a range of 2<n<3.
    Type: Grant
    Filed: November 9, 2016
    Date of Patent: September 1, 2020
    Assignees: JAPAN SCIENCE AND TECHNOLOGY AGENCY, TOKYO INSTITUTE OF TECHNOLOGY
    Inventors: Hideo Hosono, Michikazu Hara, Masaaki Kitano, Hiroshi Mizoguchi, Toshiharu Yokoyama, Kyosuke Yamagata
  • Patent number: 10737947
    Abstract: The present invention provides a zinc nitride compound suitable for electronic devices such as high-speed transistors, high-efficiency visible light-emitting devices, high-efficiency solar cells, and high-sensitivity visible light sensors. The zinc nitride compound is represented, for example, by the chemical formula CaZn2N2 or the chemical formula X12ZnN2 wherein X1 is Be or Mg. The zinc nitride compound is preferably synthesized at a high pressure of 1 GPa or more.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: August 11, 2020
    Assignee: PANASONIC CORPORATION
    Inventors: Fumiyasu Oba, Hideo Hosono, Hidenori Hiramatsu, Hideya Kumomi, Yu Kumagai, Soshi Iimura, Yoshinori Muraba, Lee Alan Burton, Isao Tanaka, Yoyo Hinuma