Patents by Inventor Hideyuki Sugiyama

Hideyuki Sugiyama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7796423
    Abstract: It is made possible to provide a reconfigurable logic circuit with which high integration can be achieved. A reconfigurable logic circuit includes: a multiplexer which includes a plurality of spin MOSFETs each having a source and drain containing a magnetic material, and a selecting portion including a plurality of MOSFETs and selecting a spin MOSFET from the plurality of spin MOSFETs, based on control data transmitted from control lines; a determining circuit which determines whether magnetization of the magnetic material of the source and drain of a selected spin MOSFET, which is selected by the selecting portion, is in a first state or in a second state; and a first and second write circuits which put the magnetization of the magnetic material of the source and drain of the selected spin MOSFET into the second and first states respectively by supplying a write current flowing between the source and drain of the selected spin MOSFET.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: September 14, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hideyuki Sugiyama, Mizue Ishikawa, Tomoaki Inokuchi, Yoshiaki Saito, Tetsufumi Tanamoto
  • Publication number: 20100200899
    Abstract: A spin transistor includes a source electrode, a drain electrode, and a gate electrode on a semiconductor substrate. At least one of the source electrode and the drain electrode includes a semiconductor region and a magnetic layer. The semiconductor region is formed in the semiconductor substrate. The magnetic layer is formed on the semiconductor region, and contains a crystalline Heusler alloy containing at least one of cobalt (Co) and iron (Fe). The semiconductor region and the magnetic layer contain the same impurity element.
    Type: Application
    Filed: February 5, 2010
    Publication date: August 12, 2010
    Inventors: Takao MARUKAME, Mizue Ishikawa, Tomoaki Inokuchi, Hideyuki Sugiyama, Yoshiaki Saito
  • Publication number: 20100187585
    Abstract: A spin MOS field effect transistor includes a source electrode and a drain electrode each having a structure obtained by stacking an impurity diffusion layer, a (001)-oriented MgO layer and a Heusler alloy. The impurity diffusion layer is formed in a surface region of a semiconductor layer. The (001)-oriented MgO layer is formed on the impurity diffusion layer. The Heusler alloy is formed on the MgO layer.
    Type: Application
    Filed: March 31, 2010
    Publication date: July 29, 2010
    Inventors: Mizue Ishikawa, Yoshiaki Saito, Hideyuki Sugiyama, Tomoaki Inokuchi
  • Patent number: 7750390
    Abstract: A spin FET according to an example of the present invention includes a magnetic pinned layer whose magnetization direction is fixed, a magnetic free layer whose magnetization direction is changed, a channel between the magnetic pinned layer and the magnetic free layer, a gate electrode provided on the channel via a gate insulation layer, and a multiferroric layer which is provided on the magnetic free layer, and whose magnetization direction is changed by an electric field.
    Type: Grant
    Filed: December 13, 2006
    Date of Patent: July 6, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshiaki Saito, Hideyuki Sugiyama, Tomoaki Inokuchi
  • Patent number: 7746601
    Abstract: An area of an element can be made small and fluctuation in area can be reduced. A magneto-resistance effect element is provided with a first electrode with an end face; a magneto-resistance effect film which is formed such that a surface thereof comes in contact with the end face of the first electrode; and a second electrode which is formed on another surface of the magneto-resistance effect element opposed from the surface coming in contact with the surface of the first electrode. The magneto-resistance effect film includes a magnetization pinned layer whose magnetization direction is pinned, a magnetization free layer whose magnetization direction is changeable, and a first non-magnetic layer which is provided between the magnetization pinned layer and the magnetization free layer.
    Type: Grant
    Filed: July 22, 2008
    Date of Patent: June 29, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hideyuki Sugiyama, Yoshiaki Saito
  • Patent number: 7709867
    Abstract: A spin MOS field effect transistor includes a source electrode and a drain electrode each having a structure obtained by stacking an impurity diffusion layer, a (001)-oriented MgO layer and a Heusler alloy. The impurity diffusion layer is formed in a surface region of a semiconductor layer. The (001)-oriented MgO layer is formed on the impurity diffusion layer. The Heusler alloy is formed on the MgO layer.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: May 4, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Mizue Ishikawa, Yoshiaki Saito, Hideyuki Sugiyama, Tomoaki Inokuchi
  • Publication number: 20100090262
    Abstract: A spin transistor includes a non-magnetic semiconductor substrate having a channel region, a first area, and a second area. The channel region is between the first and the second areas. The spin transistor also includes a first conductive layer located above the first area and made of a ferromagnetic material magnetized in a first direction; and a second conductive layer located above the second area and made of a ferromagnetic material magnetized in one of the first direction and a second direction that is antiparallel with respect to the first direction. The channel region introduces electron spin between the conductive layers. The spin transistor also includes a gate electrode located between the conductive layers and above the channel region; and a tunnel barrier film located between the non-magnetic semiconductor substrate and at least one of the conductive layers.
    Type: Application
    Filed: December 15, 2009
    Publication date: April 15, 2010
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yoshiaki SAITO, Hideyuki Sugiyama
  • Publication number: 20100091556
    Abstract: It is possible to reduce a current required for spin injection writing. A magneto-resistance effect element includes: a first magnetization pinned layer; a magnetization free layer; a tunnel barrier layer; a second magnetization pinned layer whose direction of magnetization is pinned to be substantially anti-parallel to the direction of magnetization of the first magnetization pinned layer, and; a non-magnetic layer.
    Type: Application
    Filed: December 14, 2009
    Publication date: April 15, 2010
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Tomoaki Inokuchi, Yoshiaki Saito, Hideyuki Sugiyama
  • Publication number: 20100072529
    Abstract: A stack includes a crystalline MgO layer, crystalline Heusler alloy layer, and amorphous Heusler alloy layer. The crystalline Heusler alloy layer is provided on the MgO layer. The amorphous Heusler alloy layer is provided on the crystalline Heusler alloy layer.
    Type: Application
    Filed: September 23, 2009
    Publication date: March 25, 2010
    Inventors: Takao MARUKAME, Mizue ISHIKAWA, Tomoaki INOKUCHI, Hideyuki SUGIYAMA, Yoshiaki SAITO
  • Publication number: 20100073025
    Abstract: A programmable logic circuit includes: an input circuit configured to receive a plurality of input signals; and a programmable cell array including a plurality of unit programmable cells arranged in a matrix form, each of the unit programmable cells including a first memory circuit of resistance change type including a first transistor and a second memory circuit of resistance change type including a second transistor, the first and second memory circuits connected in parallel, each gate of the first transistors on same row respectively receiving one input signal, each gate of the second transistors on same row receiving an inverted signal of the one input signal, output terminals of the first and second memory circuits on same column being connected to a common output line.
    Type: Application
    Filed: March 16, 2009
    Publication date: March 25, 2010
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Tetsufumi TANAMOTO, Hideyuki SUGIYAMA, Kazutaka IKEGAMI, Yoshiaki SAITO
  • Publication number: 20100072528
    Abstract: A spin transistor includes a first ferromagnetic layer, a second ferromagnetic layer, a semiconductor layer between the first and second ferromagnetic layers, and a gate electrode on or above a surface of the semiconductor layer, the surface being between the first and second ferromagnetic layers. The first ferromagnetic layer comprises a ferromagnet which has a first minority spin band located at a high energy side and a second minority spin band located at a low energy side, and has a Fermi level in an area of the high energy side higher than a middle of a gap between the first and second minority spin bands.
    Type: Application
    Filed: September 17, 2009
    Publication date: March 25, 2010
    Inventors: Tomoaki INOKUCHI, Takao Marukame, Mizue Ishikawa, Hideyuki Sugiyama, Yoshiaki Saito
  • Patent number: 7663171
    Abstract: It is possible to reduce a current required for spin injection writing. A magneto-resistance effect element includes: a first magnetization pinned layer; a magnetization free layer; a tunnel barrier layer; a second magnetization pinned layer whose direction of magnetization is pinned to be substantially anti-parallel to the direction of magnetization of the first magnetization pinned layer, and; a non-magnetic layer.
    Type: Grant
    Filed: September 19, 2005
    Date of Patent: February 16, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tomoaki Inokuchi, Yoshiaki Saito, Hideyuki Sugiyama
  • Publication number: 20100019798
    Abstract: It is made possible to provide a spin MOSFET that can minimize the increase in production costs and can perform both spin injection writing and reading. A spin MOSFET includes: a substrate that has a semiconductor region of a first conductivity type; first and second ferromagnetic stacked films that are formed at a distance from each other on the semiconductor region, and each have the same stacked structure comprising a first ferromagnetic layer, a nonmagnetic layer, and a second ferromagnetic layer stacked in this order, the second ferromagnetic stacked film having a film-plane area different from that of the first ferromagnetic stacked film; a gate insulating film that is formed on a portion of the semiconductor region, the portion being located between the first ferromagnetic stacked film and the second ferromagnetic stacked film; and a gate that is formed on the gate insulating film.
    Type: Application
    Filed: June 18, 2009
    Publication date: January 28, 2010
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Yoshiaki Saito, Hideyuki Sugiyama, Tomoaki Inokuchi, Mizue Ishikawa, Takao Marukame
  • Patent number: 7652913
    Abstract: It is made possible to cause spin inversion at a low current density which does not cause element destruction and to conduct writing with a small current. A magnetoresistance effect element includes: a magnetization pinned layer in which magnetization direction is pinned; a magnetic recording layer in which magnetization direction is changeable, the magnetization direction in the magnetization pinned layer forming an angle which is greater than 0 degree and less than 180 degrees with a magnetization direction in the magnetic recording layer, and the magnetization direction in the magnetic recording layer being inverted by injecting spin-polarized electrons into the magnetic recording layer; and a non-magnetic metal layer provided between the magnetization pinned layer and the magnetic recording layer.
    Type: Grant
    Filed: December 11, 2006
    Date of Patent: January 26, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hideyuki Sugiyama, Yoshiaki Saito, Tomoaki Inokuchi
  • Patent number: 7652315
    Abstract: A spin transistor includes a non-magnetic semiconductor substrate having a channel region, a first area, and a second area. The channel region is between the first and the second areas. The spin transistor also includes a first conductive layer located above the first area and made of a ferromagnetic material magnetized in a first direction; and a second conductive layer located above the second area and made of a ferromagnetic material magnetized in one of the first direction and a second direction that is antiparallel with respect to the first direction. The channel region introduces electron spin between the conductive layers. The spin transistor also includes a gate electrode located between the conductive layers and above the channel region; and a tunnel barrier film located between the non-magnetic semiconductor substrate and at least one of the conductive layers.
    Type: Grant
    Filed: July 8, 2008
    Date of Patent: January 26, 2010
    Assignee: Kabuhsiki Kaisha Toshiba
    Inventors: Yoshiaki Saito, Hideyuki Sugiyama
  • Patent number: 7649767
    Abstract: A spin-injection magnetic random access memory of an aspect of the present invention includes a magnetoresistive element, a unit which writes data into the magnetoresistive element by use of spin-polarized electrons generated by a spin-injection current and which applies, to the magnetoresistive element, a magnetic field of a direction of a hard magnetization of the magnetoresistive element during the writing.
    Type: Grant
    Filed: June 4, 2008
    Date of Patent: January 19, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tomoaki Inokuchi, Yoshiaki Saito, Hideyuki Sugiyama
  • Patent number: 7602636
    Abstract: A spin MOSFET includes: a semiconductor substrate; a first magnetic film formed on the semiconductor substrate and including a first ferromagnetic layer, a magnetization direction of the first ferromagnetic layer being pinned; a second magnetic film formed on the semiconductor substrate to separate from the first magnetic film and including a magnetization free layer, a first nonmagnetic layer being a tunnel insulator and provided on the magnetization free layer, and a magnetization pinned layer provided on the first nonmagnetic layer, a magnetization direction of the magnetization free layer being changeable and a magnetization direction of the magnetization pinned layer being fixed; a gate insulating film provided at least on the semiconductor substrate between the first magnetic film and the second magnetic film; and a gate electrode formed on the gate insulating film.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: October 13, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshiaki Saito, Hideyuki Sugiyama, Tomoaki Inokuchi
  • Publication number: 20090243653
    Abstract: A semiconductor integrated circuit includes an n-channel spin FET including one of a magnetic tunnel junction and a magneto-semiconductor junction, the n-channel spin FET including a gate terminal to receive an input signal, a source terminal to receive a first power supply potential, and a drain terminal connected to an output terminal, a p-channel FET including a gate terminal to receive a clock signal, a source terminal to receive a second power supply potential, and a drain terminal connected to the output terminal, a subsequent circuit connected to the output terminal, and a control circuit which turns on the p-channel FET to start charging the output terminal, then turns off the p-channel FET to end the charging, and supplies the input signal to the gate terminal of the n-channel spin FET.
    Type: Application
    Filed: March 23, 2009
    Publication date: October 1, 2009
    Inventors: Tomoaki INOKUCHI, Mizue Ishikawa, Hideyuki Sugiyama, Yoshiaki Saito
  • Publication number: 20090244960
    Abstract: It is made possible to provide a highly reliable magnetoresistive effect element and a magnetic memory that operate with low power consumption and current writing and without element destruction. The magnetoresistive effect element includes a first magnetization pinned layer comprising at least one magnetic layer and in which a magnetization direction is pinned, a magnetization free layer in which a magnetization direction is changeable, a tunnel barrier layer provided between the first magnetization pinned layer and the magnetization free layer, a non-magnetic metal layer provided on a first region in an opposite surface of the magnetization free layer from the tunnel barrier layer, a dielectric layer provided on a second region other than the first region in the opposite surface of the magnetization free layer from the tunnel barrier layer; and a second magnetization pinned layer provided to cover opposite surfaces of the non-magnetic metal layer and the dielectric layer from the magnetization free layer.
    Type: Application
    Filed: June 10, 2009
    Publication date: October 1, 2009
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yoshiaki SAITO, Hideyuki Sugiyama, Tomoaki Inokuchi
  • Publication number: 20090179667
    Abstract: It is made possible to provide a reconfigurable logic circuit with which high integration can be achieved. A reconfigurable logic circuit includes: a multiplexer which includes a plurality of spin MOSFETs each having a source and drain containing a magnetic material, and a selecting portion including a plurality of MOSFETs and selecting a spin MOSFET from the plurality of spin MOSFETs, based on control data transmitted from control lines; a determining circuit which determines whether magnetization of the magnetic material of the source and drain of a selected spin MOSFET, which is selected by the selecting portion, is in a first state or in a second state; and a first and second write circuits which put the magnetization of the magnetic material of the source and drain of the selected spin MOSFET into the second and first states respectively by supplying a write current flowing between the source and drain of the selected spin MOSFET.
    Type: Application
    Filed: December 19, 2008
    Publication date: July 16, 2009
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Hideyuki SUGIYAMA, Mizue ISHIKAWA, Tomoaki INOKUCHI, Yoshiaki SAITO, Tetsufumi TANAMOTO