Patents by Inventor Hirofumi Kan

Hirofumi Kan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170171956
    Abstract: The present invention relates to a method for manufacturing a tracer-encapsulated solid pellet for magnetic-confinement fusion, the method comprising a liquid droplet formation step of discharging an organic liquid containing an organic solvent into a stabilizing liquid to thereby form liquid droplets 12, and an organic solvent removal step of removing the organic solvent from the liquid droplets 12A. The organic liquid to be used is a liquid having a first organic polymer containing tracer atoms and a second organic polymer being an organic polymer different from the first organic polymer dissolved in the organic solvent, wherein the first organic polymer and the second organic polymer can be mutually phase-separated.
    Type: Application
    Filed: May 15, 2015
    Publication date: June 15, 2017
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Nakahiro SATOH, Ryo YOSHIMURA, Masaru TAKAGI, Toshiyuki KAWASHIMA, Hirofumi KAN
  • Patent number: 9672944
    Abstract: An object of the present invention is to efficiently improve uniformity of energy lines to be irradiated.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: June 6, 2017
    Assignees: OSAKA UNIVERSITY, HAMAMATSU PHOTONICS K.K.
    Inventors: Masakatsu Murakami, Nobuhiko Sarukura, Hiroshi Azechi, Ryo Yasuhara, Toshiyuki Kawashima, Hirofumi Kan
  • Publication number: 20170133110
    Abstract: The present invention relates to a method for manufacturing a fuel capsule for laser fusion, the method including a liquid droplet formation step, using a combined nozzle 3 equipped with a first nozzle 6 and a second nozzle 7 having a discharge port surrounding a discharge port 61 of the first nozzle, of discharging water 8 from the first nozzle and organic liquids 9A, 9B containing an organic solvent from the second nozzle simultaneously into a stabilizing liquid 13 to thereby form liquid droplets 12 in which the water is covered with the organic liquids, an organic solvent removal step of removing the organic solvent from the liquid droplets, and a water removal step of removing the water covered with the organic liquid having formed the liquid droplets. The first organic polymer and the second organic polymer are used which can be mutually phase-separated.
    Type: Application
    Filed: May 15, 2015
    Publication date: May 11, 2017
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Nakahiro SATOH, Ryo YOSHIMURA, Masaru TAKAGI, Toshiyuki KAWASHIMA, Hirofumi KAN
  • Publication number: 20170033537
    Abstract: A semiconductor laser device includes: a semiconductor laser array in which a plurality of active layers that emit laser lights with a divergence angle ?S (>4°) in a slow axis direction are arranged; a first optical element that reflects first partial lights by a first reflecting surface and returns the first partial lights to the active layers; and a second optical element that reflects partial mode lights of second partial lights by a second reflecting surface and returns the partial mode lights to the active layers, the first reflecting surface forms an angle equal to or greater than 2° and less than (?S/2) with a plane perpendicular to an optical axis direction of the active layers, and the second reflecting surface forms an angle greater than (??S/2) and equal to or less than ?2° with the plane perpendicular to the optical axis direction of the active layers.
    Type: Application
    Filed: March 3, 2015
    Publication date: February 2, 2017
    Applicant: Hamamatsu Photonics K.K.
    Inventors: Yujin ZHENG, Hirofumi KAN
  • Patent number: 9363882
    Abstract: An object is to be capable of inducing a nuclear fusion reaction at a relatively high efficiency and downsize a device. A nuclear fusion device 1 of the present invention includes a nuclear fusion target 7 including a target substrate 7a containing deuterium or tritium and a thin-film layer 7b containing deuterium or tritium stacked on the target substrate 7a, a vacuum container 5 for storing the nuclear fusion target 7, and a laser unit 3 for irradiating two successive first and second pulsed laser lights P1, P2 toward the thin-film layer 7b of the nuclear fusion target 7, and the intensity of the first pulsed laser light P1 is set to a value that is smaller than that of the second pulsed laser light P2 and allows peeling of the thin-film layer 7b from the target substrate 7a.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: June 7, 2016
    Assignees: HAMAMATSU PHOTONICS K.K., TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takashi Sekine, Toshiyuki Kawashima, Hirofumi Kan, Yoneyoshi Kitagawa, Yoshitaka Mori, Hirozumi Azuma, Tatsumi Hioki, Tomoyoshi Motohiro, Yasushi Miyamoto, Naoki Nakamura
  • Publication number: 20160104547
    Abstract: An object of the present invention is to efficiently improve uniformity of energy lines to be irradiated.
    Type: Application
    Filed: November 23, 2015
    Publication date: April 14, 2016
    Inventors: Masakatsu MURAKAMI, Nobuhiko SARUKURA, Hiroshi AZECHI, Ryo YASUHARA, Toshiyuki KAWASHIMA, Hirofumi KAN
  • Patent number: 9230694
    Abstract: An object of the present invention is to efficiently improve uniformity of energy lines to be irradiated.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: January 5, 2016
    Assignees: OSAKA UNIVERSITY, HAMAMATSU PHOTONICS K.K.
    Inventors: Masakatsu Murakami, Nobuhiko Sarukura, Hiroshi Azechi, Ryo Yasuhara, Toshiyuki Kawashima, Hirofumi Kan
  • Publication number: 20150270019
    Abstract: A target shell monitoring device 4 that monitors an attitude and a position of the target shell Tg1, a compression laser output device 5a that irradiates the target shell Tg1 with a compression laser light LS1, and a heating laser output device 6 that irradiates the target shell Tg1 with a heating laser light LS3 following the compression laser light LS1 are provided. The target shell Tg1 has a hollow spherical shell shape, includes an approximately spherical space Sp on an inner side thereof, includes at least one through hole H1 connecting an outer side thereof and the space Sp, and includes, on an outer surface Sf1 thereof, irradiation areas Ar1 and Ar2 to be irradiated with compression laser lights.
    Type: Application
    Filed: October 10, 2013
    Publication date: September 24, 2015
    Inventors: Takashi Sekine, Takashi Kurita, Toshiyuki Kawashima, Nakahiro Satoh, Hirofumi Kan, Yoneyoshi Kitagawa, Yoshitaka Mori, Katsuhiro Ishii, Kazuhisa Fujita, Ryohei Hanayama, Shinichiro Okihara, Atsushi Sunahara, Osamu Komeda, Naoki Nakamura, Yasuhiko Nishimura, Hirozumi Azuma
  • Patent number: 9088022
    Abstract: A fuel cell has a fuel cell main body, a fuel supply unit, a voltage sensor, a supply speed determining unit, a fuel supply control unit, and a connecting unit. The voltage sensor measures the open-circuit voltage of the fuel cell main body. The supply speed determining unit determines the fuel supply speed of the fuel supply unit, on the basis of the results obtained from the measurement performed by the voltage sensor, in the case where the voltage measured by the voltage sensor is smaller than a predetermined value. The fuel supply control unit controls, on the basis of the supply speed thus determined, the fuel supply from the fuel supply unit. The connecting unit connects a load to the fuel cell main body, in the case where the voltage measured by the voltage sensor is larger than the predetermined value.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: July 21, 2015
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Naoki Iwamura, Hirofumi Kan, Daisuke Watanabe, Hidenori Suzuki, Shunsuke Kimura
  • Patent number: 8879592
    Abstract: A semiconductor laser bar 2 is mounted onto a liquid-cooled heat sink 1. A molybdenum reinforcement member 3 is fixed onto the surface opposite to the surface on which the semiconductor laser module 2 is mounted. The molybdenum has a linear expansion coefficient less than that of the heat sink 1. Sub-mounts are preferably made of a Cu—W alloy, more preferably of the reinforcement member 3 molybdenum. In this case, the stresses that are imposed on the heat sink 1 when being expanded or contracted can cancel each other out.
    Type: Grant
    Filed: October 12, 2011
    Date of Patent: November 4, 2014
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Nobuto Kageyama, Hirofumi Miyajima, Hirofumi Kan
  • Publication number: 20140226772
    Abstract: A radiation generating apparatus comprises a fuel storage unit 20 for storing a mixed liquid 61, a pressure application unit 10 for applying a pressure to the mixed liquid 61, a jet formation unit 30 for forming a jet 61a of the mixed liquid 61, a reaction unit 44 for forming the jet 61a of the mixed liquid 61 therein, a pressure adjustment unit 41 for setting a pressure in the reaction unit 44 lower than an internal pressure of the jet formation unit 30, and a light source unit 45 for irradiating a particle group 63a with laser light L1.
    Type: Application
    Filed: August 8, 2012
    Publication date: August 14, 2014
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Takeshi Watari, Katsunobu Nishihara, Masaru Takagi, Nakahiro Satoh, Toshiyuki Kawashima, Hirofumi Kan
  • Patent number: 8765311
    Abstract: A fuel cell (1) includes an electromotive unit (2) having a membrane electrode assembly (MEA) (12), a fuel storage unit (4) storing a liquid fuel, and a fuel supply mechanism (3) supplying the fuel from the fuel storage unit (4) to a fuel electrode (7) of the membrane electrode assembly (12). The membrane electrode assembly (12) has a gas vent hole (17) provided in a manner to penetrate through at least an electrolyte membrane (11) to let a gas component generated on a side of the fuel electrode (7) escape to a side of an air electrode (10).
    Type: Grant
    Filed: February 25, 2008
    Date of Patent: July 1, 2014
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Hideyuki Oozu, Yukinori Akamoto, Yuuichi Sato, Genta Oomichi, Hirofumi Kan, Daisuke Watanabe, Nobuyasu Negishi, Yuichi Yoshida, Asako Sato
  • Patent number: 8755103
    Abstract: A plasma shutter forming apparatus for forming a plasma shutter used in a system configured to generate and accelerate radiations by irradiating a target with a laser pulse and generating a high-density plasma for blocking the laser pulse which is returned as a feedback light to upstream of the system without being absorbed by the high-density plasma, including a plasma shutter generating target, and a plasma shutter triggering laser irradiator, wherein the laser pulse from the plasma shutter triggering laser irradiator is directed to the plasma shutter generating target to generate the high-density plasma and form the plasma shutter, thereby blocking the laser pulse which is returned as the feedback light. Optics are prevented from becoming damaged by feedback light reflecting when generating the high-density plasma in a laser-driven radiation generating system and returning back to the upstream of the laser system.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: June 17, 2014
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Masayuki Suzuki, Hiromitsu Kiriyama, Izuru Daito, Hajime Okada, Hironori Sugiyama, Shinichi Matsuoka, Hirofumi Kan
  • Publication number: 20140147761
    Abstract: A fuel cell has a fuel cell main body, a fuel supply unit, a voltage sensor, a supply speed determining unit, a fuel supply control unit, and a connecting unit. The voltage sensor measures the open-circuit voltage of the fuel cell main body. The supply speed determining unit determines the fuel supply speed of the fuel supply unit, on the basis of the results obtained from the measurement performed by the voltage sensor, in the case where the voltage measured by the voltage sensor is smaller than a predetermined value. The fuel supply control unit controls, on the basis of the supply speed thus determined, the fuel supply from the fuel supply unit. The connecting unit connects a load to the fuel cell main body, in the case where the voltage measured by the voltage sensor is larger than the predetermined value.
    Type: Application
    Filed: February 3, 2014
    Publication date: May 29, 2014
    Applicant: Murata Manufacturing Co., Ltd.
    Inventors: Naoki IWAMURA, Hirofumi KAN, Daisuke WATANABE, Hidenori SUZUKI, Shunsuke KIMURA
  • Patent number: 8675702
    Abstract: A laser module LM is provided with a quantum cascade laser 1, a tubular member 5, and an infrared detector 7. The tubular member 5 has a pair of opening ends 5a, 5b and is arranged so that one opening end 5a is opposed to a face 1b opposed to an emitting end face 1a of the quantum cascade laser 1. The infrared detector 7 is arranged so as to be opposed to the other opening end 5b of the tubular member 5. Light emitted from the face (rear end face) 1b opposed to the emitting end face (front end face) 1a of the quantum cascade laser 1 is guided inside the tubular member 5 to enter the infrared detector 7, and then is detected.
    Type: Grant
    Filed: May 21, 2010
    Date of Patent: March 18, 2014
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Takahide Ochiai, Naota Akikusa, Tadataka Edamura, Hirofumi Kan
  • Publication number: 20140030671
    Abstract: A dental therapy apparatus which enables a dental therapy more surely and less invasively is provided. A dental therapy apparatus (10A) comprises a laser light source (11) emitting laser light (L) having a wavelength within a wavelength region of 5.7 to 6.6 ?m; a controller (12) pulse-driving the laser light source and controlling at least one of pulse width and repetition frequency of pulsed laser light emitted from the laser light source; and an irradiation optical system for irradiating a tooth (20) including a carious part (21) with the light emitted from the laser light source. In this dental therapy apparatus, the controller controls at least one of the pulse width and repetition frequency of the pulsed light, so as to selectively cut the carious part (21).
    Type: Application
    Filed: May 17, 2012
    Publication date: January 30, 2014
    Applicants: HAMAMATSU PHOTONICS K.K., OSAKA UNIVERSITY
    Inventors: Kunio Awazu, Katsunori Ishii, Naota Akikusa, Tadataka Edamura, Hirofumi Kan
  • Publication number: 20130279530
    Abstract: A semiconductor laser bar 2 is mounted onto a liquid-cooled heat sink 1. A molybdenum reinforcement member 3 is fixed onto the surface opposite to the surface on which the semiconductor laser module 2 is mounted. The molybdenum has a linear expansion coefficient less than that of the heat sink 1. Sub-mounts are preferably made of a Cu—W alloy, more preferably of the reinforcement member 3 molybdenum. In this case, the stresses that are imposed on the heat sink 1 when being expanded or contracted can cancel each other out.
    Type: Application
    Filed: October 12, 2011
    Publication date: October 24, 2013
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Nobuto Kageyama, Hirofumi Miyajima, Hirofumi Kan
  • Patent number: 8477824
    Abstract: This invention relates to semiconductor laser apparatus with a structure for reducing the divergence angle of output light and for narrowing the spectral width. The semiconductor laser apparatus has at least a semiconductor laser array, a collimator lens, a path rotator, and an optical element with a reflecting function. The collimator lens collimates a plurality of laser beams from the semiconductor laser array, in a predetermined direction. The path rotator outputs each beam collimated in the predetermined direction, with a predetermined divergence angle in the predetermined direction in a state in which a transverse section of the beam is rotated by about 90°. The optical element is arranged at a position where at least a part of each beam from the path rotator arrives, and constitutes at least a part of an external resonator. This optical element reflects a part of each beam from the path rotator to return the reflected part of each beam to the active layer in the semiconductor laser array.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: July 2, 2013
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Yujin Zheng, Hirofumi Kan, Xin Gao
  • Patent number: 8404399
    Abstract: The present invention relates to a fuel cell including: a membrane electrode assembly (2) having a fuel electrode (13), an air electrode (16), and an electrolyte membrane (17) sandwiched therebetween; and a fuel storage unit (4) storing a liquid fuel. The fuel cell is capable of continuously generating electricity for long hours only by being replenished with a fuel, and therefore, attempts have been made to miniaturize the fuel cell to use it as a power source of portable electronic devices. When the membrane electrode assembly and the fuel storage unit in the fuel cell are connected via a flow path, a fuel supply state becomes uneven depending on the shape and the like of the flow path even though a supply amount of the fuel can be adjusted, which causes a problem such as a decrease in an output of the fuel cell.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: March 26, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroyuki Hasebe, Yukinori Akamoto, Hideyuki Oozu, Hidenori Suzuki, Koichi Kawamura, Yuuichi Sato, Genta Oomichi, Nobuyasu Negishi, Takashi Shimoyamada, Yuichi Yoshida, Hirofumi Kan, Kenichi Takahashi
  • Patent number: 8405034
    Abstract: A neutron measurement apparatus 1A includes a neutron detection unit 10, a photodetection unit 20 that detects scintillation light emitted from the neutron detection unit 10, a light guide optical system 15 that guides the scintillation light from the neutron detection unit 10 to the photodetection unit 20, and a shielding member 30 which is located between the neutron detection unit 10 and the photodetection unit 20 for shielding radiation passing in a direction toward the photodetection unit 20. Further, a scintillator formed of a lithium glass material in which PrF3 is doped to a glass material 20Al(PO3)3-80LiF is used as a neutron detection scintillator composing the neutron detection unit 10. Thereby, the neutron detection scintillator and the neutron measurement apparatus which are capable of suitably performing neutron measurement such as measurement of scattered neutrons from an implosion plasma can be realized.
    Type: Grant
    Filed: April 27, 2010
    Date of Patent: March 26, 2013
    Assignees: Osaka University, TOKAI UNIVERSITY Educational System
    Inventors: Hiroshi Azechi, Nobuhiko Sarukura, Yasunobu Arikawa, Mitsuo Nakai, Hirofumi Kan, Takahiro Murata, Toshihisa Suyama, Shigeru Fujino, Yoshiyuki Usuki, Hideki Yoshida, Akira Yoshikawa