Patents by Inventor Hirofumi Kan

Hirofumi Kan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120307950
    Abstract: An object is to be capable of inducing a nuclear fusion reaction at a relatively high efficiency and downsize a device. A nuclear fusion device 1 of the present invention includes a nuclear fusion target 7 including a target substrate 7a containing deuterium or tritium and a thin-film layer 7b containing deuterium or tritium stacked on the target substrate 7a, a vacuum container 5 for storing the nuclear fusion target 7, and a laser unit 3 for irradiating two successive first and second pulsed laser lights P1, P2 toward the thin-film layer 7b of the nuclear fusion target 7, and the intensity of the first pulsed laser light P1 is set to a value that is smaller than that of the second pulsed laser light P2 and allows peeling of the thin-film layer 7b from the target substrate 7a.
    Type: Application
    Filed: December 15, 2010
    Publication date: December 6, 2012
    Applicants: Toyota Jidosha Kabushiki Kaisha, Hamamatsu Photonics K.K.
    Inventors: Takashi Sekine, Toshiyuki Kawashima, Hirofumi Kan, Yoneyoshi Kitagawa, Yoshitaka Mori, Hirozumi Azuma, Tatsumi Hioki, Tomoyoshi Motohiro, Yasushi Miyamoto, Naoki Nakamura
  • Patent number: 8284345
    Abstract: A silicon light-emitting element includes a first conductivity type silicon substrate 10 having a first surface 10a and a second surface 10b on a side opposite to the first surface 10a, an insulating film 11 provided on the first surface 10a of the silicon substrate 10, a silicon layer 12 provided on the insulating film 11, and having a second conductivity type different from the first conductivity type, a first electrode 13 provided on the silicon layer 12, and a second electrode 14 provided on the second surface of the silicon substrate, and the silicon substrate 10 has a carrier concentration of 5×1015cm?3 to 5×1018cm?3, the silicon layer 12 has a carrier concentration of 1×1017cm?3 to 5×1019cm?3, and that is larger by one digit or more than the carrier concentration of the silicon substrate 10, and the insulating film 11 has a film thickness of 0.3 nm to 5 nm. Accordingly, a silicon light-emitting element that is applicable to a silicon photonics light source is realized.
    Type: Grant
    Filed: May 4, 2011
    Date of Patent: October 9, 2012
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Shucheng Chu, Hirofumi Kan
  • Publication number: 20120231361
    Abstract: A fuel cell has a fuel cell main body, a fuel supply unit, a voltage sensor, a supply speed determining unit, a fuel supply control unit, and a connecting unit. The voltage sensor measures the open-circuit voltage of the fuel cell main body. The supply speed determining unit determines the fuel supply speed of the fuel supply unit, on the basis of the results obtained from the measurement performed by the voltage sensor, in the case where the voltage measured by the voltage sensor is smaller than a predetermined value. The fuel supply control unit controls, on the basis of the supply speed thus determined, the fuel supply from the fuel supply unit. The connecting unit connects a load to the fuel cell main body, in the case where the voltage measured by the voltage sensor is larger than the predetermined value.
    Type: Application
    Filed: March 19, 2012
    Publication date: September 13, 2012
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Naoki IWAMURA, Hirofumi KAN, Daisuke WATANABE, Hidenori SUZUKI, Shunsuke KIMURA
  • Publication number: 20120155590
    Abstract: An object of the present invention is to efficiently improve uniformity of energy lines to be irradiated.
    Type: Application
    Filed: July 20, 2010
    Publication date: June 21, 2012
    Applicants: HAMAMATSU PHOTONICS K.K., OSAKA UNIVERSITY
    Inventors: Masakatsu Murakami, Nobuhiko Sarukura, Hiroshi Azechi, Ryo Yasuhara, Toshiyuki Kawashima, Hirofumi Kan
  • Publication number: 20120091351
    Abstract: A neutron measurement apparatus 1A includes a neutron detection unit 10, a photodetection unit 20 that detects scintillation light emitted from the neutron detection unit 10, a light guide optical system 15 that guides the scintillation light from the neutron detection unit 10 to the photodetection unit 20, and a shielding member 30 which is located between the neutron detection unit 10 and the photodetection unit 20 for shielding radiation passing in a direction toward the photodetection unit 20. Further, a scintillator formed of a lithium glass material in which PrF3 is doped to a glass material 20Al(PO3)3-80LiF is used as a neutron detection scintillator composing the neutron detection unit 10. Thereby, the neutron detection scintillator and the neutron measurement apparatus which are capable of suitably performing neutron measurement such as measurement of scattered neutrons from an implosion plasma can be realized.
    Type: Application
    Filed: April 27, 2010
    Publication date: April 19, 2012
    Applicants: OSAKA UNIVERSITY, TOKAI UNIVERSITY EDUCATIONAL SYSTEM, HAMAMATSU PHOTONICS K.K., FURUKAWA CO., LTD, NAGASAKI PREFECTURAL GOVERNMENT, TOKUYAMA CORPORATION
    Inventors: Hiroshi Azechi, Nobuhiko Sarukura, Yasunobu Arikawa, Mitsuo Nakai, Hirofumi Kan, Takahiro Murata, Toshihisa Suyama, Shigeru Fujino, Yoshiyuki Usuki, Hideki Yoshida, Akira Yoshikawa
  • Patent number: 8110836
    Abstract: A semiconductor is provided with: a silicon substrate 2a of a first conductivity type, including a first surface S1a and a second surface S2a; a silicon layer 4a of a second conductivity type, arranged on the first surface S1a of the silicon substrate 2a, including a third surface S3a opposite a junction surface with the silicon substrate 2a; a first electrode 12a arranged on the second surface S2a; a second electrode 14a arranged on the third surface S3a; and an argon added area 6a formed in a semiconductor area formed of the silicon substrate 2a and the silicon layer 4a. The argon added area 6a includes an area indicating an argon concentration of a minimum of 1×1018 cm?3 and a maximum of 2×1020 cm?3.
    Type: Grant
    Filed: August 22, 2007
    Date of Patent: February 7, 2012
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Shucheng Chu, Hirofumi Kan
  • Publication number: 20120028161
    Abstract: According to one embodiment, a fuel cell includes a membrane electrode assembly including a plurality of anodes, a plurality of cathodes each forming a pair with a corresponding one of the plurality of anodes, and an electrolyte membrane interposed between the anodes and the cathodes, a current collector configured to interpose the membrane electrode assembly in between, a fuel supply mechanism arranged on the side of the anodes of the membrane electrode assembly and configured to supply the anodes with a fuel, and a moisturizing layer arranged on the side of the cathodes of the membrane electrode assembly. The current collector includes a slit arranged so as to face a region between the cathodes.
    Type: Application
    Filed: October 6, 2011
    Publication date: February 2, 2012
    Inventors: Yuuichi Sato, Daisuke Watanabe, Genta Oomichi, Nobuyasu Negishi, Hirofumi Kan, Yukinori Akamoto
  • Publication number: 20120014402
    Abstract: A laser module LM is provided with a quantum cascade laser 1, a tubular member 5, and an infrared detector 7. The tubular member 5 has a pair of opening ends 5a, 5b and is arranged so that one opening end 5a is opposed to a face 1b opposed to an emitting end face 1a of the quantum cascade laser 1. The infrared detector 7 is arranged so as to be opposed to the other opening end 5b of the tubular member 5. Light emitted from the face (rear end face) 1b opposed to the emitting end face (front end face) 1a of the quantum cascade laser 1 is guided inside the tubular member 5 to enter the infrared detector 7, and then is detected.
    Type: Application
    Filed: May 21, 2010
    Publication date: January 19, 2012
    Applicant: Hamamatsu Photonics K.K.
    Inventors: Takahide Ochiai, Naota Akikusa, Tadataka Edamura, Hirofumi Kan
  • Patent number: 8075726
    Abstract: An object of the present invention is to provide a method for producing a hermetically sealed container, which method comprises conducting hermetic sealing of a container for beverage or food using a laser welding method, whereby the process speed of the sealing process can be made fast, strict control of the scanning position of laser spots is unnecessary, partial oversupply of energy does not occur easily, and there is no reduction in the welding area or welding strength per area due to the gathering of water drops.
    Type: Grant
    Filed: August 1, 2006
    Date of Patent: December 13, 2011
    Assignees: Kirin Beer Kabushiki Kaisha, Hamamatsu Photonics K.K.
    Inventors: Masaki Nakaya, Hirofumi Kan
  • Publication number: 20110275003
    Abstract: A fuel cell includes: an anode catalyst layer containing an anode catalyst and a proton-conductive electrolyte; a cathode catalyst layer containing a cathode catalyst and a proton-conductive electrolyte; a proton-conductive electrolyte membrane interposed between the anode catalyst layer and the cathode catalyst layer; and a mechanism supplying a fuel to the anode catalyst layer, wherein a porosity of the anode catalyst layer as measured by a mercury intrusion porosimeter is 0 to 30%.
    Type: Application
    Filed: July 19, 2011
    Publication date: November 10, 2011
    Inventors: Mitsuru Udatsu, Hirofumi Kan, Asako Satoh, Mitsuru Furuichi, Jun Momma
  • Publication number: 20110223497
    Abstract: A fuel cell includes a cathode catalyst layer, an anode catalyst layer, a proton-conductive membrane provided between the cathode catalyst layer and the anode catalyst layer, and a fuel transmitting layer that supplies a vaporized component of a liquid fuel to the anode catalyst layer. Water generated in the cathode catalyst layer is supplied to the anode catalyst layer via the proton-conductive membrane. The liquid fuel is one of a methanol aqueous solution having a concentration of over 50% by molar and liquid methanol.
    Type: Application
    Filed: April 22, 2011
    Publication date: September 15, 2011
    Inventors: Hirofumi Kan, Nobuyasu Negishi, Asako Satoh, Yumiko Takizawa, Hiroyuki Hasebe, Yuuichi Sato, Jun Momma
  • Publication number: 20110220956
    Abstract: A silicon light-emitting element includes a first conductivity type silicon substrate 10 having a first surface 10a and a second surface 10b on a side opposite to the first surface 10a, an insulating film 11 provided on the first surface 10a of the silicon substrate 10, a silicon layer 12 provided on the insulating film 11, and having a second conductivity type different from the first conductivity type, a first electrode 13 provided on the silicon layer 12, and a second electrode 14 provided on the second surface of the silicon substrate, and the silicon substrate 10 has a carrier concentration of 5×1015cm?3 to 5×1018cm?3, the silicon layer 12 has a carrier concentration of 1×1017cm?3 to 5×1019cm?3, and that is larger by one digit or more than the carrier concentration of the silicon substrate 10, and the insulating film 11 has a film thickness of 0.3 nm to 5 nm. Accordingly, a silicon light-emitting element that is applicable to a silicon photonics light source is realized.
    Type: Application
    Filed: May 4, 2011
    Publication date: September 15, 2011
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Shucheng CHU, Hirofumi KAN
  • Publication number: 20110206083
    Abstract: This invention relates to semiconductor laser apparatus with a structure for reducing the divergence angle of output light and for narrowing the spectral width. The semiconductor laser apparatus has at least a semiconductor laser array, a collimator lens, a path rotator, and an optical element with a reflecting function. The collimator lens collimates a plurality of laser beams from the semiconductor laser array, in a predetermined direction. The path rotator outputs each beam collimated in the predetermined direction, with a predetermined divergence angle in the predetermined direction in a state in which a transverse section of the beam is rotated by about 90°. The optical element is arranged at a position where at least a part of each beam from the path rotator arrives, and constitutes at least a part of an external resonator. This optical element reflects a part of each beam from the path rotator to return the reflected part of each beam to the active layer in the semiconductor laser array.
    Type: Application
    Filed: March 3, 2010
    Publication date: August 25, 2011
    Inventors: Yujin ZHENG, Hirofumi Kan, Xin Gao
  • Publication number: 20110176574
    Abstract: A solid-state laser apparatus 1 bounces laser light L2 between an end mirror 3 and an output mirror 4 via a slab-type solid-state laser medium 2 excited by excitation light L1 to thereby amplify and output the laser light L2. The solid-state laser medium 2 includes incident/exit end faces 2a, 2b on and from which the laser light L2 is made incident and exits, and reflecting end faces 2c, 2d which reflect the laser light L2 so that the incident laser light L2 propagates in a zigzag manner. The incident/exit end face 2a is made incident with the excitation light L1 so that the excitation light L1 propagates along substantially the same propagation path as that of the laser light L2 within the solid-state laser medium 2. Accordingly, a solid-state laser apparatus which can improve the coupling efficiency between the excitation light and the laser light is realized.
    Type: Application
    Filed: June 10, 2009
    Publication date: July 21, 2011
    Inventors: Tadashi Ikegawa, Toshiyuki Kawashima, Hirofumi Kan
  • Patent number: 7944956
    Abstract: A heat sink has a first flat plate, a partition plate, and a second flat plate. The first flat plate has an upper surface in which a first recess is formed. The second flat plate has a lower surface in which a second recess is formed, and an upper surface on which a semiconductor laser element is mounted. These recesses form a part of a refrigerant channel. The partition plate has a lower surface covering the first recess, an upper surface covering the second recess, and at least one through hole having the first recess communicated with the second recess. The first flat plate and the second flat plate both have a first coefficient of thermal expansion. The partition plate has a second coefficient of thermal expansion lower than the first coefficient of thermal expansion.
    Type: Grant
    Filed: April 27, 2006
    Date of Patent: May 17, 2011
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Hirofumi Miyajima, Hirofumi Kan, Nobuo Watanabe, Satoru Ooishi, Nobutaka Suzuki
  • Publication number: 20110096385
    Abstract: A plasma shutter forming apparatus for forming a plasma shutter used in a system configured to generate and accelerate radiations by irradiating a target with a laser pulse and generating a high-density plasma for blocking the laser pulse which is returned as a feedback light to upstream of the system without being absorbed by the high-density plasma, including a plasma shutter generating target, and a plasma shutter triggering laser irradiator, wherein the laser pulse from the plasma shutter triggering laser irradiator is directed to the plasma shutter generating target to generate the high-density plasma and form the plasma shutter, thereby blocking the laser pulse which is returned as the feedback light. Optics are prevented from becoming damaged by feedback light reflecting when generating the high-density plasma in a laser-driven radiation generating system and returning back to the upstream of the laser system.
    Type: Application
    Filed: October 22, 2010
    Publication date: April 28, 2011
    Inventors: Masayuki Suzuki, Hiromitsu Kiriyama, Izuru Daito, Hajime Okada, Hironori Sugiyama, Shinichi Matsuoka, Hirofumi Kan
  • Patent number: 7885299
    Abstract: The present invention relates to a semiconductor laser apparatus having a structure for preventing the corrosion of a refrigerant flow path in a heat sink and for cooling a semiconductor laser array stably over a long period of time. The semiconductor laser apparatus comprises a semiconductor laser stack in which a plurality of semiconductor laser units are stacked, a refrigerant supplier, a piping for connecting these components, and a refrigerant flowing through these components. The refrigerant supplier supplies the refrigerant to the semiconductor laser stack. The refrigerant is comprised of fluorocarbon. Each of the semiconductor laser units is constituted by a pair of a semiconductor laser array and a heat sink. The heat sink has a refrigerant flow path.
    Type: Grant
    Filed: December 15, 2008
    Date of Patent: February 8, 2011
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Hirofumi Miyajima, Hirofumi Kan, Masanobu Yamanaka
  • Patent number: 7885305
    Abstract: In an active layer 15 of a semiconductor laser device 3, a refractive index type main waveguide 4 is formed by a ridge portion 9a of a p-type clad layer 17. Side surfaces 4g and 4h of the main waveguide 4 form a relative angle ?, based on a total reflection critical angle ?c at the side surfaces 4g and 4h, with respect to a light emitting surface 1a and a light reflecting surface 1b. The main waveguide 4 is separated by predetermined distances from the light emitting surface 1a and the light reflecting surface 1b, and optical path portions 8a and 8b, for making a laser light L1 pass through, are disposed between one end of the main waveguide 4 and the light emitting surface 1a and between the other end of the main waveguide 4 and the light reflecting surface 1b. The optical path portions 8a and 8b are gain type waveguides and emit light components L2 and L3, which, among the light passing through the optical path portions 8a and 8b, deviate from a direction of a predetermined axis A, to the exterior.
    Type: Grant
    Filed: August 4, 2005
    Date of Patent: February 8, 2011
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Akiyoshi Watanabe, Hirofumi Miyajima, Hirofumi Kan
  • Publication number: 20110008704
    Abstract: The present invention relates to a fuel cell including: a membrane electrode assembly (2) having a fuel electrode (13), an air electrode (16), and an electrolyte membrane (17) sandwiched therebetween; and a fuel storage unit (4) storing a liquid fuel. The fuel cell is capable of continuously generating electricity for long hours only by being replenished with a fuel, and therefore, attempts have been made to miniaturize the fuel cell to use it as a power source of portable electronic devices. When the membrane electrode assembly and the fuel storage unit in the fuel cell are connected via a flow path, a fuel supply state becomes uneven depending on the shape and the like of the flow path even though a supply amount of the fuel can be adjusted, which causes a problem such as a decrease in an output of the fuel cell.
    Type: Application
    Filed: December 21, 2007
    Publication date: January 13, 2011
    Inventors: Hiroyuki Hasebe, Yukinori Akamoto, Hideyuki Oozu, Hidenori Suzuki, Koichi Kawamura, Yuuchi Sato, Genta Oomichi, Nobuyasu Negishi, Takashi Shimoyamada, Yuichi Yoshida, Hirofumi Kan, Kenichi Takahashi
  • Publication number: 20100255389
    Abstract: A fuel cell includes a membrane electrode assembly includes a fuel electrode, an air electrode and an electrolyte membrane interposed between the fuel electrode and the air electrode, a fuel supply mechanism disposed on the air electrode side of the membrane electrode assembly to supply fuel to the fuel electrode, and a humidification layer disposed on the air electrode side of the membrane electrode assembly to be impregnated with water produced in the air electrode. The humidification layer include a first humidification section disposed opposite to a high-temperature area of an air electrode and a second humidification section disposed opposite to a low-temperature area of the air electrode when generating electricity. The second humidification section is so configured that water vapor is released into air therefrom more easily than from the first humidification section in the membrane electrode assembly.
    Type: Application
    Filed: June 16, 2010
    Publication date: October 7, 2010
    Inventors: Akira Yajima, Asako Satoh, Hirofumi Kan, Risa Aoki, Yuichi Yoshida