Patents by Inventor Hitoshi Hoshino

Hitoshi Hoshino has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170365519
    Abstract: A wafer has a device area on one side with a plurality of devices partitioned by a plurality of division lines. Either side of the wafer is attached to an adhesive tape supported by a first annular frame. A modified region is formed in the wafer along the division lines by a laser. The wafer is placed on a support member whose outer diameter is smaller than an inner diameter of the first annular frame. After applying the laser beam, the adhesive tape is expanded thereby dividing the wafer along the division lines. A second annular frame is attached to a portion of the expanded adhesive tape. An inner diameter of the second annular frame is smaller than the outer diameter of the support member and smaller than the inner diameter of the first annular frame.
    Type: Application
    Filed: June 20, 2017
    Publication date: December 21, 2017
    Inventors: Karl Priewasser, Hitoshi Hoshino
  • Publication number: 20170301571
    Abstract: Disclosed herein is a wafer processing method for removing an annular reinforcing portion from a wafer having a device area, the annular reinforcing portion being formed around the device area. The wafer processing method includes the steps of supporting the wafer through an adhesive tape to an annular frame, forming a mark corresponding to a notch at a position radially inside a boundary portion between the annular reinforcing portion and the device area, cutting the boundary portion together with the adhesive tape to thereby separate the annular reinforcing portion from the device area, and moving the annular reinforcing portion supported through the adhesive tape to the annular frame away from a holding table to thereby remove the annular reinforcing portion from the wafer.
    Type: Application
    Filed: April 11, 2017
    Publication date: October 19, 2017
    Inventors: Toshio Tsuchiya, Hitoshi Hoshino
  • Patent number: 9455229
    Abstract: Provided is a composite substrate manufacturing method, including at least: a first raw board deforming step of preparing a first substrate by deforming a first raw board having at least one surface as a minor surface into a state in which the minor surface warps outward; and a joining step of joining, after the first raw board deforming step, a protruding surface of the first substrate and one surface of a second substrate to each other, thereby manufacturing a composite substrate including the first substrate and the second substrate, in which the second substrate is any one substrate selected from a substrate having both surfaces as substantially flat surfaces and a substrate that warps so that a surface thereof to be joined to the first substrate warps outward. Also provided are a semiconductor element manufacturing method, a composite substrate and a semiconductor element manufactured.
    Type: Grant
    Filed: April 24, 2013
    Date of Patent: September 27, 2016
    Assignees: NAMIKI SEIMITSU HOUSEKI KABUSHIKI KAISHA, DISCO CORPORATION
    Inventors: Hideo Aida, Natsuko Aota, Hidetoshi Takeda, Keiji Honjo, Hitoshi Hoshino, Mai Ogasawara
  • Publication number: 20160265140
    Abstract: In order to correct warpage resulting from the formation of a multilayer film, provided are a single crystal substrate which includes a heat-denatured layer provided in one of two regions including a first region and a second region obtained by bisecting the single crystal substrate in a thickness direction thereof, and which is warped convexly toward a side of a surface of the region provided with the heat-denatured layer, a manufacturing method for the single crystal substrate, a manufacturing method for a single crystal substrate with a multilayer film using the single crystal substrate, and an element manufacturing method using the manufacturing method for a single crystal substrate with a multilayer film.
    Type: Application
    Filed: May 25, 2016
    Publication date: September 15, 2016
    Inventors: Hideo AIDA, Natsuko AOTA, Hitoshi HOSHINO, Kenji FURUTA, Tomosaburo HAMAMOTO, Keiji HONJO
  • Patent number: 9065032
    Abstract: Provided are a method of manufacturing a light-emitting element by which a light-emitting element (80) is manufactured through the following steps and a light-emitting element manufactured by employing the method. A light-emitting element layer (40) is formed on one face (32T) of a monocrystalline substrate (30A) for a light-emitting element. Next, the other face (32B) of the monocrystalline substrate (30A) for a light-emitting element is polished until a state where a vertical hole (34A) penetrates the monocrystalline substrate (30A) for a light-emitting element in its thickness direction is established. Next, a conductive material is filled into the vertical hole (34B) from the side of the vertical hole (34B) closer to an opening (36B) in the other face (32B) to form a conductive portion (50) that is continuous from a side closer to the light-emitting element layer (40) to the opening (36B) in the other face (32B).
    Type: Grant
    Filed: April 3, 2012
    Date of Patent: June 23, 2015
    Assignees: NAMIKI SEIMITSU HOUSEKI KABUSHIKIKAISHA, DISCO CORPORATION
    Inventors: Hideo Aida, Natsuko Aota, Hidetoshi Takeda, Keiji Honjo, Hitoshi Hoshino
  • Publication number: 20150076662
    Abstract: Provided is a composite substrate manufacturing method, including at least: a first raw board deforming step of preparing a first substrate by deforming a first raw board having at least one surface as a minor surface into a state in which the minor surface warps outward; and a joining step of joining, after the first raw board deforming step, a protruding surface of the first substrate and one surface of a second substrate to each other, thereby manufacturing a composite substrate including the first substrate and the second substrate, in which the second substrate is any one substrate selected from a substrate having both surfaces as substantially flat surfaces and a substrate that warps so that a surface thereof to be joined to the first substrate warps outward. Also provided are a semiconductor element manufacturing method, a composite substrate and a semiconductor element manufactured.
    Type: Application
    Filed: April 24, 2013
    Publication date: March 19, 2015
    Applicants: NAMIKI SEIMITSU HOUSEKI KABUSHIKIKAISHA, DISCO CORPORATION
    Inventors: Hideo Aida, Natsuko Aota, Hidetoshi Takeda, Keiji Honjo, Hitoshi Hoshino, Mai Ogasawara
  • Patent number: 8946056
    Abstract: In a splitting method for an optical device wafer, the wafer having optical devices formed individually in regions partitioned by a plurality of crossing scheduled splitting lines provided on a front surface and having a reflective film formed on a reverse surface, a focal point of a laser beam is positioned to the inside of the optical device wafer and the laser beam is irradiated along the scheduled splitting lines from the reverse surface side of the wafer to form modification layers in the inside of the wafer. An external force is applied to the wafer to split the wafer along the scheduled splitting lines and form a plurality of optical device chips. The laser beam has a wavelength that produces transmittance through the reflective film equal to or higher than 80%.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: February 3, 2015
    Assignee: Disco Corporation
    Inventors: Hiroumi Ueno, Hitoshi Hoshino
  • Publication number: 20140217458
    Abstract: Provided are a method of manufacturing a light-emitting element by which a light-emitting element (80) is manufactured through the following steps and a light-emitting element manufactured by employing the method. A light-emitting element layer (40) is formed on one face (32T) of a monocrystalline substrate (30A) for a light-emitting element. Next, the other face (32B) of the monocrystalline substrate (30A) for a light-emitting element is polished until a state where a vertical hole (34A) penetrates the monocrystalline substrate (30A) for a light-emitting element in its thickness direction is established. Next, a conductive material is filled into the vertical hole (34B) from the side of the vertical hole (34B) closer to an opening (36B) in the other face (32B) to form a conductive portion (50) that is continuous from a side closer to the light-emitting element layer (40) to the opening (36B) in the other face (32B).
    Type: Application
    Filed: April 3, 2012
    Publication date: August 7, 2014
    Applicants: DISCO CORPORATION, NAMIKI SEIMITSU HOUSEKI KABUSHIKIKAISHA
    Inventors: Hideo Aida, Natsuko Aota, Hidetoshi Takeda, Keiji Honjo, Hitoshi Hoshino
  • Patent number: 8673695
    Abstract: A sapphire wafer dividing method including a modified layer forming step of forming a plurality of modified layers inside a sapphire wafer along a plurality of crossing division lines formed on the front side where a light emitting layer is formed, and a chamfering and dividing step of forming a plurality of cut grooves on the back side of the sapphire wafer along the division lines, thereby dividing the sapphire wafer into individual light emitting devices along the modified layers as a division start point, wherein the corners of the back side of each light emitting device are chamfered by the formation of the cut grooves in the chamfering and dividing step.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: March 18, 2014
    Assignee: Disco Corporation
    Inventors: Takashi Okamura, Hitoshi Hoshino
  • Patent number: 8518730
    Abstract: A sapphire wafer dividing method including a cut groove forming step of forming a plurality of cut grooves on the back side of a sapphire wafer along a plurality of crossing division lines formed on the front side where a light emitting layer is formed, a modified layer forming step of forming a plurality of modified layers inside the sapphire wafer along the division lines, and a dividing step of dividing the sapphire wafer into individual light emitting devices along the modified layers as a division start point, thereby chamfering the corners of the back side of each light emitting device owing to the formation of the cut grooves in the cut groove forming step.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: August 27, 2013
    Assignee: Disco Corporation
    Inventors: Hitoshi Hoshino, Hiroumi Ueno, Yuji Nitta, Takashi Okamura
  • Patent number: 8497189
    Abstract: A wafer has, on a front face thereof, a device region in which a device is formed in regions partitioned by a plurality of scheduled division lines. An outer peripheral region surrounds the device region. A reflecting film of a predetermined width is formed from the outermost periphery of the wafer on a rear face of the wafer corresponding to the outer peripheral region. The front face side of the wafer is held in a chuck table, and a focal point of a pulsed laser beam of a wavelength having permeability through the wafer is positioned in the inside of the wafer corresponding to the scheduled division lines. The pulsed laser beam is irradiated from the rear face side of the wafer to form modified layers individually serving as a start point of division along the scheduled division lines in the inside of the wafer.
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: July 30, 2013
    Assignee: Disco Corporation
    Inventor: Hitoshi Hoshino
  • Publication number: 20130189806
    Abstract: A wafer has, on a front face thereof, a device region in which a device is formed in regions partitioned by a plurality of scheduled division lines. An outer peripheral region surrounds the device region. A reflecting film of a predetermined width is formed from the outermost periphery of the wafer on a rear face of the wafer corresponding to the outer peripheral region. The front face side of the wafer is held in a chuck table, and a focal point of a pulsed laser beam of a wavelength having permeability through the wafer is positioned in the inside of the wafer corresponding to the scheduled division lines. The pulsed laser beam is irradiated from the rear face side of the wafer to form modified layers individually serving as a start point of division along the scheduled division lines in the inside of the wafer.
    Type: Application
    Filed: July 3, 2012
    Publication date: July 25, 2013
    Applicant: DISCO CORPORATION
    Inventor: Hitoshi Hoshino
  • Publication number: 20130161794
    Abstract: Provided are an internally reformed substrate for epitaxial growth having an arbitrary warpage shape and/or an arbitrary warpage amount, an internally reformed substrate with a multilayer film using the internally reformed substrate for epitaxial growth, a semiconductor device, a bulk semiconductor substrate, and manufacturing methods therefor. The internally reformed substrate for epitaxial growth includes: a single crystal substrate; and a heat-denatured layer formed in an internal portion of the single crystal substrate by laser irradiation to the single crystal substrate.
    Type: Application
    Filed: March 4, 2011
    Publication date: June 27, 2013
    Applicants: DISCO CORPORATION, NAMIKI SEIMITSU HOUSEKI KABUSHIKI KAISHA
    Inventors: Hideo Aida, Natsuko Aota, Hitoshi Hoshino, Kenji Furuta, Tomosaburo Hamamoto, Keiji Honjo
  • Publication number: 20130161797
    Abstract: In order to correct warpage resulting from the formation of a multilayer film, provided are a single crystal substrate which includes a heat-denatured layer provided in one of two regions including a first region and a second region obtained by bisecting the single crystal substrate in a thickness direction thereof, and which is warped convexly toward a side of a surface of the region provided with the heat-denatured layer, a manufacturing method for the single crystal substrate, a manufacturing method for a single crystal substrate with a multilayer film using the single crystal substrate, and an element manufacturing method using the manufacturing method for a single crystal substrate with a multilayer film.
    Type: Application
    Filed: March 4, 2011
    Publication date: June 27, 2013
    Applicants: DISCO CORPORATION, NAMIKI SEIMITSU HOUSEKI KABUSHIKI KAISHA
    Inventors: Hideo Aida, Natsuko Aota, Hitoshi Hoshino, Kenji Furuta, Tomosaburo Hamamoto, Keiji Honjo
  • Publication number: 20130082358
    Abstract: In order to correct warpage that occurs in formation of a multilayer film, provided are a single crystal substrate with a multilayer film, a manufacturing method therefor, and an element manufacturing method using the manufacturing method. The single crystal substrate with a multilayer film includes: a single crystal substrate (20); a multilayer film (30) including two or more layers that is formed on one surface of the single crystal substrate (20) and having a compressive stress; and a heat-denatured layer (22) provided, of two regions (20U, 20D) obtained by bisecting the single crystal substrate (20) in the thickness direction thereof, at least in the region (20D) on the side of the surface opposite to the one surface of the single crystal substrate (20) having the multilayer film (30) formed thereon.
    Type: Application
    Filed: March 4, 2011
    Publication date: April 4, 2013
    Applicants: DISCO CORPORATION, NAMIKI SEIMITSU HOUSEKI KABUSHIKI KAISHA
    Inventors: Hideo Aida, Natsuko Aota, Hitoshi Hoshino, Kenji Furuta, Tomosaburo Hamamoto, Keiji Honjo
  • Publication number: 20130062734
    Abstract: Provided are a crystalline film in which variations in the crystal axis angle after separation from a substrate for epitaxial growth have been eliminated, and various devices in which the properties thereof have been improved by including the crystalline film. And the crystalline film has a thickness of 300 ?m or more and 10 mm or less and reformed region pattern is formed in an internal portion of the crystalline film.
    Type: Application
    Filed: March 4, 2011
    Publication date: March 14, 2013
    Applicants: DISCO CORPORATION, NAMIKI SEIMITSU HOUSEKI KABUSHIKI KAISHA
    Inventors: Hideo Aida, Natsuko Aota, Hitoshi Hoshino, Kenji Furuta, Tomosaburo Hamamoto, Keiji Honjo
  • Patent number: 8318518
    Abstract: A light emitting device including a sapphire layer and a light emitting layer formed on the sapphire layer. The sapphire layer has a polygonal sectional shape whose internal angle is an obtuse angle, such as a regular hexagonal shape. Light emitted from the light emitting layer is totally reflected on one side surface of the sapphire layer and next transmitted through another side surface of the sapphire layer.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: November 27, 2012
    Assignee: Disco Corporation
    Inventors: Hitoshi Hoshino, Toshiyuki Tateishi
  • Publication number: 20120289026
    Abstract: In a splitting method for an optical device wafer, the wafer having optical devices formed individually in regions partitioned by a plurality of crossing scheduled splitting lines provided on a front surface and having a reflective film formed on a reverse surface, a focal point of a laser beam is positioned to the inside of the optical device wafer and the laser beam is irradiated along the scheduled splitting lines from the reverse surface side of the wafer to form modification layers in the inside of the wafer. An external force is applied to the wafer to split the wafer along the scheduled splitting lines and form a plurality of optical device chips. The laser beam has a wavelength that produces transmittance through the reflective film equal to or higher than 80%.
    Type: Application
    Filed: May 7, 2012
    Publication date: November 15, 2012
    Applicant: DISCO CORPORATION
    Inventors: Hiroumi Ueno, Hitoshi Hoshino
  • Publication number: 20120156816
    Abstract: A sapphire wafer dividing method including a modified layer forming step of forming a plurality of modified layers inside a sapphire wafer along a plurality of crossing division lines formed on the front side where a light emitting layer is formed, and a chamfering and dividing step of forming a plurality of cut grooves on the back side of the sapphire wafer along the division lines, thereby dividing the sapphire wafer into individual light emitting devices along the modified layers as a division start point, wherein the corners of the back side of each light emitting device are chamfered by the formation of the cut grooves in the chamfering and dividing step.
    Type: Application
    Filed: December 1, 2011
    Publication date: June 21, 2012
    Applicant: DISCO CORPORATION
    Inventors: Takashi Okamura, Hitoshi Hoshino
  • Publication number: 20120083059
    Abstract: A sapphire wafer dividing method including a cut groove forming step of forming a plurality of cut grooves on the back side of a sapphire wafer along a plurality of crossing division lines formed on the front side where a light emitting layer is formed, a modified layer forming step of forming a plurality of modified layers inside the sapphire wafer along the division lines, and a dividing step of dividing the sapphire wafer into individual light emitting devices along the modified layers as a division start point, thereby chamfering the corners of the back side of each light emitting device owing to the formation of the cut grooves in the cut groove forming step.
    Type: Application
    Filed: September 21, 2011
    Publication date: April 5, 2012
    Applicant: DISCO CORPORATION
    Inventors: Hitoshi Hoshino, Hiroumi Ueno, Yuji Nitta, Takashi Okamura