Patents by Inventor Hsun Wang

Hsun Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210257248
    Abstract: A method includes forming a first conductive feature over a semiconductor substrate, forming an ILD layer over the first conductive feature, patterning the ILD layer to form a trench, and forming a conductive layer over the patterned ILD layer to fill the trench. The method further includes polishing the conductive layer to form a via contact configured to interconnect the first conductive feature with a second conductive feature, where polishing the conductive layer exposes a top surface of the ILD layer, polishing the exposed top surface of the ILD layer, such that a top portion of the via contact protrudes from the exposed top surface of the ILD layer, and forming the second conductive feature over the via contact, such that the top portion of the via contact extends into the second conductive feature.
    Type: Application
    Filed: July 31, 2020
    Publication date: August 19, 2021
    Inventors: Pang-Sheng Chang, Chao-Hsun Wang, Kuo-YI Chao, Fu-Kai Yang, Mei-Yun Wang, Li-Chieh Wu, Chun-Wei Hsu
  • Publication number: 20210249509
    Abstract: A device includes a first semiconductor strip protruding from a substrate, a second semiconductor strip protruding from the substrate, an isolation material surrounding the first semiconductor strip and the second semiconductor strip, a nanosheet structure over the first semiconductor strip, wherein the nanosheet structure is separated from the first semiconductor strip by a first gate structure including a gate electrode material, wherein the first gate structure partially surrounds the nanosheet structure, and a first semiconductor channel region and a semiconductor second channel region over the second semiconductor strip, wherein the first semiconductor channel region is separated from the second semiconductor channel region by a second gate structure including the gate electrode material, wherein the second gate structure extends on a top surface of the second semiconductor strip.
    Type: Application
    Filed: February 11, 2020
    Publication date: August 12, 2021
    Inventors: Pei-Yu Wang, Pei-Hsun Wang
  • Publication number: 20210226020
    Abstract: A semiconductor structure is provided. The semiconductor structure includes nanostructures over a substrate, a gate stack around the nanostructures, a gate spacer layer alongside the gate stack, an inner spacer layer between the gate spacer layer and the nanostructures, a source/drain feature adjoining the nanostructures, a contact plug over the source/drain feature, and a silicon germanium layer along the surface of the source/drain feature and between the contact plug and the inner spacer layer.
    Type: Application
    Filed: January 16, 2020
    Publication date: July 22, 2021
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Zhi-Chang LIN, Shih-Cheng CHEN, Kuo-Cheng CHIANG, Pei-Hsun WANG, Chih-Hao WANG
  • Publication number: 20210210390
    Abstract: A semiconductor structure includes a first fin, which includes a first plurality of suspended nanostructures vertically stacked over one another, each of the first plurality of suspended nanostructure having a center portion that has a first cross section, and a second fin, which includes a second plurality of suspended nanostructures vertically stacked over one another, the first plurality of suspended nanostructures and the second plurality of suspended nanostructures having different material compositions, each of the second plurality of suspended nanostructure having a center portion that has a second cross section, wherein a shape or an area of the first cross section is different from that of the second cross section.
    Type: Application
    Filed: December 7, 2020
    Publication date: July 8, 2021
    Inventors: Wei-Sheng Yun, Chih-Hao Wang, Jui-Chien Huang, Kuo-Cheng Chiang, Chih-Chao Chou, Chun-Hsiung Lin, Pei-Hsun Wang
  • Publication number: 20210202732
    Abstract: A FinFET device structure is provided. The FinFET device structure includes a gate structure formed over a fin structure, and a gate spacer layer formed on a sidewall of the gate structure. The FinFET device structure includes a gate contact structure formed over the gate structure, and a first isolation layer surrounding the gate contact structure.
    Type: Application
    Filed: March 12, 2021
    Publication date: July 1, 2021
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Huai CHANG, Chao-Hsun WANG, Kuo-Yi CHAO, Mei-Yun WANG
  • Patent number: 11049774
    Abstract: A method includes forming an epitaxy semiconductor layer over a semiconductor substrate, and etching the epitaxy semiconductor layer and the semiconductor substrate to form a semiconductor strip, which includes an upper portion acting as a mandrel, and a lower portion under the mandrel. The upper portion is a remaining portion of the epitaxy semiconductor layer, and the lower portion is a remaining portion of the semiconductor substrate. The method further includes growing a first semiconductor fin starting from a first sidewall of the mandrel, growing a second semiconductor fin starting from a second sidewall of the mandrel. The first sidewall and the second sidewall are opposite sidewalls of the mandrel. A first transistor is formed based on the first semiconductor fin. A second transistor is formed based on the second semiconductor fin.
    Type: Grant
    Filed: July 18, 2019
    Date of Patent: June 29, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Pei-Hsun Wang, Shih-Cheng Chen, Chun-Hsiung Lin, Chih-Hao Wang
  • Publication number: 20210193842
    Abstract: The present disclosure provides a semiconductor device that includes a semiconductor fin disposed over a substrate, an isolation structure at least partially surrounding the fin, an epitaxial source/drain (S/D) feature disposed over the semiconductor fin, where an extended portion of the epitaxial S/D feature extends over the isolation structure, and a silicide layer disposed on the epitaxial S/D feature, where the silicide layer covers top, bottom, sidewall, front, and back surfaces of the extended portion of the S/D feature.
    Type: Application
    Filed: March 5, 2021
    Publication date: June 24, 2021
    Inventors: Pei-Hsun Wang, Chih-Chao Chou, Shih-Cheng Chen, Jung-Hung Chang, Jui-Chien Huang, Chun-Hsiung Lin, Chih-Hao Wang
  • Publication number: 20210167179
    Abstract: A semiconductor structure includes a metal gate structure comprising a gate dielectric layer and a gate electrode, a conductive layer disposed over the metal gate structure, and a contact feature in direct contact with the top portion of the conductive layer, where the conductive layer includes a bottom portion disposed below a top surface of the metal gate structure and a top portion disposed over the top surface of the metal gate structure, and where the top portion laterally extends beyond a sidewall of the bottom portion.
    Type: Application
    Filed: February 15, 2021
    Publication date: June 3, 2021
    Inventors: Chao-Hsun Wang, Yu-Feng Yin, Kuo-Yi Chao, Mei-Yun Wang, Feng-Yu Chang, Chen-Yuan Kao
  • Publication number: 20210167218
    Abstract: Semiconductor device and the manufacturing method thereof are disclosed herein. An exemplary method comprises forming a fin over a substrate, wherein the fin comprises a first semiconductor layer and a second semiconductor layer including different semiconductor materials, and the fin comprises a channel region and a source/drain region; forming a dummy gate structure over the channel region of the fin and over the substrate; etching a portion of the fin in the source/drain region to form a trench therein, wherein a bottom surface of the trench is below a bottom surface of the second semiconductor layer; selectively removing an edge portion of the second semiconductor layer in the channel region such that the second semiconductor layer is recessed; forming a sacrificial structure around the recessed second semiconductor layer and over the bottom surface of the trench; and epitaxially growing a source/drain feature in the source/drain region of the fin.
    Type: Application
    Filed: February 15, 2021
    Publication date: June 3, 2021
    Inventors: Pei-Hsun Wang, Chun-Hsiung Lin, Chih-Hao Wang
  • Publication number: 20210118801
    Abstract: Interconnect structures and method of forming the same are disclosed herein. An exemplary interconnect structure includes a first contact feature in a first dielectric layer, a second dielectric layer over the first dielectric layer, a second contact feature over the first contact feature, a barrier layer between the second dielectric layer and the second contact feature, and a liner between the barrier layer and the second contact feature. An interface between the first contact feature and the second contact feature includes the liner but is free of the barrier layer.
    Type: Application
    Filed: October 18, 2019
    Publication date: April 22, 2021
    Inventors: Chao-Hsun Wang, Wang-Jung Hsueh, Kuo-Yi Chao, Mei-Yun Wang, Ru-Gun Liu
  • Publication number: 20210104441
    Abstract: Provided are FinFET devices and methods of forming the same. A FinFET device includes a substrate, a first gate strip and a second gate strip. The substrate has at least one first fin in a first region, at least one second fin in a second region and an isolation layer covering lower portions of the first and second fins. The first fin includes a first material layer and a second material layer over the first material layer, and the interface between the first material layer and the second material layer is uneven. The first gate strip is disposed across the first fin. The second gate strip is disposed across the second fin.
    Type: Application
    Filed: November 23, 2020
    Publication date: April 8, 2021
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Hao Wang, Jui-Chien Huang, Kuo-Cheng Ching, Chun-Hsiung Lin, Pei-Hsun Wang
  • Publication number: 20210098376
    Abstract: Vias, along with methods for fabricating vias, are disclosed that exhibit reduced capacitance and resistance. An exemplary interconnect structure includes a first source/drain contact and a second source/drain contact disposed in a dielectric layer. The first source/drain contact physically contacts a first source/drain feature and the second source/drain contact physically contacts a second source/drain feature. A first via having a first via layer configuration, a second via having a second via layer configuration, and a third via having a third via layer configuration are disposed in the dielectric layer. The first via and the second via extend into and physically contact the first source/drain contact and the second source/drain contact, respectively. A first thickness of the first via and a second thickness of the second via are the same. The third via physically contacts a gate structure, which is disposed between the first source/drain contact and the second source/drain contact.
    Type: Application
    Filed: August 4, 2020
    Publication date: April 1, 2021
    Inventors: Shih-Che Lin, Po-Yu Huang, Chao-Hsun Wang, Kuo-Yi Chao, Mei-Yun Wang, Feng-Yu Chang, Rueijer Lin, Wei-Jung Lin, Chen-Yuan Kao
  • Publication number: 20210098605
    Abstract: A semiconductor device according to the present disclosure includes first gate-all-around (GAA) devices in a first device area and a second GAA devices in a second device area. Each of the first GAA devices includes a first vertical stack of channel members, a first gate structure over and around the first vertical stack of channel members, and a plurality of inner spacer features. Each of the second GAA devices includes a second vertical stack of channel members and a second gate structure over and around the second vertical stack of channel members. Two adjacent channel members of the first vertical stack of channel members are separated by a portion of the first gate structure and at least one of the plurality of inner spacer features. Two adjacent channel members of the second vertical stack of channel members are separated only by a portion of the second gate structure.
    Type: Application
    Filed: September 26, 2019
    Publication date: April 1, 2021
    Inventors: Pei-Hsun Wang, Kuo-Cheng Chiang, Lo-Heng Chang, Jung-Hung Chang, Chih-Hao Wang
  • Publication number: 20210098625
    Abstract: A method for forming a semiconductor device structure is provided. The method includes forming a first gate stack and a second gate stack over a substrate. The substrate has a base, a first fin structure, and a second fin structure over the base, the second fin structure is wider than the first fin structure. The method includes partially removing the first fin structure, which is not covered by the first gate stack, and the second fin structure, which is not covered by the second gate stack. The method includes forming an inner spacer layer over the first fin structure, which is not covered by the first gate stack. The method includes forming a first stressor and a second stressor respectively over the inner spacer layer and the second fin structure, which is not covered by the second gate stack.
    Type: Application
    Filed: September 27, 2019
    Publication date: April 1, 2021
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ching-Wei TSAI, Yu-Xuan HUANG, Kuan-Lun CHENG, Chih-Hao WANG, Min CAO, Jung-Hung CHANG, Lo-Heng CHANG, Pei-Hsun WANG, Kuo-Cheng CHIANG
  • Publication number: 20210098304
    Abstract: Provided is a method of manufacturing a semiconductor device including providing a semiconductor substrate, and forming an epitaxial stack on the semiconductor substrate. The epitaxial stack comprises a plurality of first epitaxial layers interposed by a plurality of second epitaxial layers. The method further includes patterning the epitaxial stack and the semiconductor substrate to form a semiconductor fin, recessing a portion of the semiconductor fin to form source/drain spaces; and laterally removing portions of the plurality of first epitaxial layers exposed by the source/drain spaces to form a plurality of cavities. The method further includes forming inner spacers in the plurality of cavities, performing a treatment process to remove an inner spacer residue in the source/drain spaces, forming S/D features in the source/drain spaces, and forming a gate structure engaging the semiconductor fin.
    Type: Application
    Filed: March 2, 2020
    Publication date: April 1, 2021
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Lo-Heng Chang, Chih-Hao Wang, Kuo-Cheng Chiang, Jung-Hung Chang, Pei-Hsun Wang
  • Publication number: 20210091190
    Abstract: A source/drain is disposed over a substrate. A source/drain contact is disposed over the source/drain. A first via is disposed over the source/drain contact. The first via has a laterally-protruding bottom portion and a top portion that is disposed over the laterally-protruding bottom portion.
    Type: Application
    Filed: June 11, 2020
    Publication date: March 25, 2021
    Inventors: Po-Yu Huang, Shih-Che Lin, Chao-Hsun Wang, Kuo-Yi Chao, Mei-Yun Wang
  • Publication number: 20210090943
    Abstract: A semiconductor device includes a gate structure disposed over a substrate, and a first dielectric layer disposed over the substrate, including and over the gate structure. A first metal feature is disposed in the first dielectric layer, including an upper portion having a first width and a lower portion having a second width that is different than the first width. A dielectric spacer is disposed along the lower portion of the first metal feature, wherein the upper portion of the first metal feature is disposed over the dielectric spacer. A second dielectric layer is disposed over the first dielectric layer, including over the first metal feature and a second metal feature extends through the second dielectric layer to physically contact with the first metal feature. A third metal feature extends through the second dielectric layer and the first dielectric layer to physically contact the gate structure.
    Type: Application
    Filed: December 7, 2020
    Publication date: March 25, 2021
    Inventors: Chao-Hsun Wang, Hsien-Cheng Wang, Mei-Yun Wang
  • Publication number: 20210083090
    Abstract: Methods for manufacturing a semiconductor structure is provided. The method for manufacturing the semiconductor structure includes forming nanowire structures over a substrate and forming a gate structure across nanowire structures. The method for manufacturing the semiconductor structure also includes forming a source/drain structure adjacent to the gate structure and forming a Si layer over the source/drain structure. The method for manufacturing the semiconductor structure also includes forming a SiGe layer over the Si layer and oxidizing the SiGe layer to form an oxide layer. The method for manufacturing the semiconductor structure also includes forming a contact through the Si layer over the source/drain structure.
    Type: Application
    Filed: September 16, 2019
    Publication date: March 18, 2021
    Inventors: Chen-Han WANG, Pei-Hsun WANG, Chun-Hsiung LIN, Chih-Hao WANG
  • Publication number: 20210083114
    Abstract: A semiconductor structure includes a source/drain (S/D) feature disposed in a semiconductor layer, a metal gate stack (MG) disposed in a first interlayer dielectric (ILD) layer and adjacent to the S/D feature, a second ILD layer disposed over the MG, and an S/D contact disposed over the S/D feature. The semiconductor structure further includes an air gap disposed between a sidewall of a bottom portion of the S/D contact and the first ILD layer, where a sidewall of a top portion of the S/D contact is in direct contact with the second ILD layer.
    Type: Application
    Filed: September 16, 2019
    Publication date: March 18, 2021
    Inventors: Chao-Hsun Wang, Chen-Ming Lee, Kuo-Yi Chao, Mei-Yun Wang, Pei-Yu Chou, Kuo-Ju Chen
  • Patent number: 10950728
    Abstract: A FinFET device structure is provided. The FinFET device structure includes a gate structure formed over a fin structure and an S/D contact structure formed over the fin structure. The FinFET device structure also includes an S/D conductive plug formed over the S/D contact structure, and the S/D conductive plug includes a first barrier layer and a first conductive layer. The FinFET device structure includes a gate contact structure formed over the gate structure, and the gate contact structure includes a second barrier layer and a second conductive layer. The FinFET device structure includes a first isolation layer surrounding the S/D conductive plug, and the first barrier layer is between the first isolation layer and the first conductive layer. A second isolation layer surrounding the gate contact structure, and the second barrier layer is between the second isolation layer and the second conductive layer.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: March 16, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chung-Huai Chang, Chao-Hsun Wang, Kuo-Yi Chao, Mei-Yun Wang