Patents by Inventor Hua Pan

Hua Pan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240141786
    Abstract: An active control method and device for large deformation of a deep thin-bedded surrounding rock, the active control method includes: drill holes in the surrounding rock of a tunnel against a tunnel face, add the active control device containing a sleeve, a high-strength prestressed anchor bolt, a resin anchoring agent and a grouting device into drill holes, apply a preload to the anchor bolt when the resin anchoring agent has a certain strength, and carry out lag grouting in the surrounding rock through the grouting device after stress adjustment, and the high-strength prestressed anchor bolt and the grouting device are inserted in the sleeve with holes on the side. The active control device or method of the invention can effectively reduce the fracture depth and degree of a thin-bedded soft rock in deep engineering, and effectively inhibit the occurrence of large deformation disasters.
    Type: Application
    Filed: October 30, 2023
    Publication date: May 2, 2024
    Inventors: Hua Zhou, Yelin Feng, Fugang Zhao, Pengzhi Pan, Hailong Huang, Zhaofeng Wang, Xufeng Liu, Yangyi Zhou, Longhai Xi, Xuanjiao Zhen
  • Publication number: 20240136280
    Abstract: A method includes forming a dielectric layer over a contact pad of a device, forming a first polymer layer over the dielectric layer, forming a first conductive line and a first portion of a second conductive line over the first polymer layer, patterning a photoresist to form an opening over the first portion of the second conductive feature, wherein after patterning the photoresist the first conductive line remains covered by photoresist, forming a second portion of the second conductive line in the opening, wherein the second portion of the second conductive line physically contacts the first portion of the second conductive line, and forming a second polymer layer extending completely over the first conductive line and the second portion of the second conductive line.
    Type: Application
    Filed: January 2, 2024
    Publication date: April 25, 2024
    Inventors: Chao-Wen Shih, Chen-Hua Yu, Han-Ping Pu, Hsin-Yu Pan, Hao-Yi Tsai, Sen-Kuei Hsu
  • Patent number: 11967532
    Abstract: A method of forming a semiconductor structure includes forming a semiconductor fin over a substrate, forming a dummy gate stack over the semiconductor fin, depositing a dielectric layer over the dummy gate stack, and selectively etching the dielectric layer, such that a top portion and a bottom portion of the dielectric layer form a step profile. The method further includes removing portions of the dielectric layer to form a gate spacer and subsequently forming a source/drain feature in the semiconductor fin adjacent to the gate spacer.
    Type: Grant
    Filed: July 8, 2021
    Date of Patent: April 23, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ta-Chun Lin, Kuo-Hua Pan, Chih-Yung Lin, Jhon Jhy Liaw
  • Patent number: 11959962
    Abstract: Apparatus and techniques for an integrated circuit (IC) package to automatically detect, through an input/out pin, external component parameters and parasitics. An example IC package generally includes a pin for coupling to a component external to the IC package, and at least one of a resistance detector, an inductance detector, or a capacitance detector coupled to the pin, and configured to detect at least one of a resistance, an inductance, or a capacitance, respectively, of a lumped parameter model for the component external to the IC package. The resistance detector, inductance detector, or capacitance detector may also be configured to detect parasitics associated with at least one of the component, the pin, or a connection between the component and the pin.
    Type: Grant
    Filed: June 23, 2022
    Date of Patent: April 16, 2024
    Assignee: QUALCOMM Incorporated
    Inventors: Chengyue Yu, Hua Guan, Yingjie Chen, Fan Yang, Yufei Pan, Jize Jiang, Shamim Ahmed
  • Publication number: 20240120337
    Abstract: A semiconductor device structure includes a first dielectric wall, a plurality of first semiconductor layers vertically stacked and extending outwardly from a first side of the first dielectric wall, each first semiconductor layer has a first width, a plurality of second semiconductor layers vertically stacked and extending outwardly from a second side of the first dielectric wall, each second semiconductor layer has a second width, a plurality of third semiconductor layers disposed adjacent the second side of the first dielectric wall, each third semiconductor layer has a third width greater than the second width, a first gate electrode layer surrounding at least three surfaces of each of the first semiconductor layers, the first gate electrode layer having a first conductivity type, and a second gate electrode layer surrounding at least three surfaces of each of the second semiconductor layers, the second gate electrode layer having a second conductivity type opposite the first conductivity type.
    Type: Application
    Filed: January 15, 2023
    Publication date: April 11, 2024
    Inventors: Ta-Chun LIN, Chih-Hung HSIEH, Chun-Sheng LIANG, Wen-Chiang HONG, Chun-Wing YEUNG, Kuo-Hua PAN, Chih-Hao CHANG, Jhon Jhy LIAW
  • Publication number: 20240113112
    Abstract: Methods of cutting gate structures and fins, and structures formed thereby, are described. In an embodiment, a substrate includes first and second fins and an isolation region. The first and second fins extend longitudinally parallel, with the isolation region disposed therebetween. A gate structure includes a conformal gate dielectric over the first fin and a gate electrode over the conformal gate dielectric. A first insulating fill structure abuts the gate structure and extends vertically from a level of an upper surface of the gate structure to at least a surface of the isolation region. No portion of the conformal gate dielectric extends vertically between the first insulating fill structure and the gate electrode. A second insulating fill structure abuts the first insulating fill structure and an end sidewall of the second fin. The first insulating fill structure is disposed laterally between the gate structure and the second insulating fill structure.
    Type: Application
    Filed: December 1, 2023
    Publication date: April 4, 2024
    Inventors: Ryan Chia-Jen Chen, Cheng-Chung Chang, Shao-Hua Hsu, Yu-Hsien Lin, Ming-Ching Chang, Li-Wei Yin, Tzu-Wen Pan, Yi-Chun Chen
  • Publication number: 20240112465
    Abstract: Various embodiments of the teachings herein include an image processing system comprising: a video stream processing device configured to receive a video stream, segment the video stream into multiple frames of pictures arranged in chronological order, and distribute the multiple frames of pictures to edge computing devices in a connected edge computing device group; and a picture collecting device configured to receive pictures from the edge computing device group. The individual edge computing devices in the edge computing device group are each configured to subject the received pictures to target identification, and send the pictures marked with a region in which an identified target is located. The picture collecting device is further configured to restore in chronological order as a video stream the received pictures marked with target identification results.
    Type: Application
    Filed: January 18, 2022
    Publication date: April 4, 2024
    Applicant: Siemens Aktiengesellschaft
    Inventors: Yue Yu, Chang Wei Loh, Wei Yu Chen, Tian Hua Pan, Sheng Bo Hu
  • Publication number: 20240113071
    Abstract: An integrated circuit package including electrically floating metal lines and a method of forming are provided. The integrated circuit package may include integrated circuit dies, an encapsulant around the integrated circuit dies, a redistribution structure on the encapsulant, a first electrically floating metal line disposed on the redistribution structure, a first electrical component connected to the redistribution structure, and an underfill between the first electrical component and the redistribution structure. A first opening in the underfill may expose a top surface of the first electrically floating metal line.
    Type: Application
    Filed: January 5, 2023
    Publication date: April 4, 2024
    Inventors: Chung-Shi Liu, Mao-Yen Chang, Yu-Chia Lai, Kuo-Lung Pan, Hao-Yi Tsai, Ching-Hua Hsieh, Hsiu-Jen Lin, Po-Yuan Teng, Cheng-Chieh Wu, Jen-Chun Liao
  • Patent number: 11942451
    Abstract: A semiconductor structure includes a functional die, a dummy die, a redistribution structure, a seal ring and an alignment mark. The dummy die is electrically isolated from the functional die. The redistribution structure is disposed over and electrically connected to the functional die. The seal ring is disposed over the dummy die. The alignment mark is between the seal ring and the redistribution structure, wherein the alignment mark is electrically isolated from the dummy die, the redistribution structure and the seal ring. The insulating layer encapsulates the functional die and the dummy die.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: March 26, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Mao-Yen Chang, Yu-Chia Lai, Cheng-Shiuan Wong, Ting Hao Kuo, Ching-Hua Hsieh, Hao-Yi Tsai, Kuo-Lung Pan, Hsiu-Jen Lin
  • Patent number: 11926238
    Abstract: Disclosed is an apparatus for charging a battery comprising a first charging device configured to communicate with at least one second charging device, the first charging device and the at least one second charging device configured to charge the battery, and comprising a first controller configured to control the first charging device, wherein the first controller determines the number of the at least one second charging devices by communicating with a second controller.
    Type: Grant
    Filed: March 11, 2020
    Date of Patent: March 12, 2024
    Assignee: MINE MOBILITY RESEARCH CO., LTD.
    Inventors: Somphote Ahunai, Wen Wu Pan, Cao Kai Zheng, Gang Liu, Jian Hua Li, Xiao Meng Deng, Zhao Hui Peng
  • Publication number: 20240079447
    Abstract: Semiconductor structures and methods for manufacturing the same are provided. The semiconductor structure includes a first stack structure formed over a substrate, and the first stack structure includes a plurality of nanostructures that extend along a first direction. The semiconductor structure includes a second stack structure formed adjacent to the first stack structure, and the second stack structure includes a plurality of nanostructures that extend along the first direction. The semiconductor structure includes a first gate structure formed over the first stack structure, and the first gate structure extends along a second direction. The semiconductor structure also includes a dielectric wall between the first stack structure and the second stack structure, and the dielectric wall includes a low-k dielectric material, and the dielectric wall is connected to the first stack structure and the second stack structure.
    Type: Application
    Filed: February 3, 2023
    Publication date: March 7, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ta-Chun LIN, Chun-Sheng LIANG, Kuo-Hua PAN, Chih-Hao CHANG, Jhon-Jhy LIAW
  • Patent number: 11923455
    Abstract: A semiconductor device and method of forming the same are disclosed. The semiconductor device includes a fin structure, a gate electrode, a source-drain region, a plug and a hard mask structure. The gate electrode crosses over the fin structure. The source-drain region in the fin structure is aside the gate electrode. The plug is disposed over and electrically connected to the gate electrode. The hard mask structure surrounds the plug and is disposed over the gate electrode, wherein the hard mask structure includes a first hard mask layer and a second hard mask layer, the second hard mask layer covers a sidewall and a top surface of the first hard mask layer, and a material of the first hard mask layer is different from a material of the second hard mask layer.
    Type: Grant
    Filed: June 10, 2021
    Date of Patent: March 5, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Sheng Liang, Kuo-Hua Pan, Hsin-Che Chiang, Ming-Heng Tsai
  • Patent number: 11923194
    Abstract: A semiconductor device includes a semiconductor substrate having a first lattice constant, a dopant blocking layer disposed over the semiconductor substrate, the dopant blocking layer having a second lattice constant different from the first lattice constant, and a buffer layer disposed over the dopant blocking layer, the buffer layer having a third lattice constant different from the second lattice constant. The semiconductor device also includes a plurality of channel members suspended over the buffer layer, an epitaxial feature abutting the channel members, and a gate structure wrapping each of the channel members.
    Type: Grant
    Filed: April 25, 2022
    Date of Patent: March 5, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD
    Inventors: Hsin-Che Chiang, Wei-Chih Kao, Chun-Sheng Liang, Kuo-Hua Pan
  • Patent number: 11923413
    Abstract: Semiconductor structures are provided. The semiconductor structure includes a substrate and nanostructures formed over the substrate. The semiconductor structure further includes a gate structure surrounding the nanostructures and a source/drain structure attached to the nanostructures. The semiconductor structure further includes a contact formed over the source/drain structure and extending into the source/drain structure.
    Type: Grant
    Filed: February 7, 2022
    Date of Patent: March 5, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ta-Chun Lin, Kuo-Hua Pan, Jhon-Jhy Liaw, Chao-Ching Cheng, Hung-Li Chiang, Shih-Syuan Huang, Tzu-Chiang Chen, I-Sheng Chen, Sai-Hooi Yeong
  • Publication number: 20240072562
    Abstract: A motor control circuit includes a first switch module, a three-phase inverter, and a control module. A power supply module, the first switch module, the three-phase inverter, and a three-phase alternating current motor form a current loop; midpoints of three phase legs of the three-phase inverter are respectively connected to three phase coils of the three-phase alternating current motor; the three-phase alternating current motor is configured to input or output a current by using a wire N extending from a connection point of the three phase coils; the control module is connected to the three-phase inverter, first switch module, three-phase alternating current motor, and power supply module; the control module is configured to control the three-phase inverter to enable the motor control circuit to receive a voltage of the power supply module and output a direct current, and to boost a voltage of the power supply module.
    Type: Application
    Filed: November 9, 2023
    Publication date: February 29, 2024
    Inventors: Changjiu LIU, Hua PAN, Ronghua NING, Yang LIU, Ning YANG
  • Publication number: 20240072155
    Abstract: A method includes forming a transistor, which includes forming a dummy gate stack over a semiconductor region, and forming an Inter-Layer Dielectric (ILD). The dummy gate stack is in the ILD, and the ILD covers a source/drain region in the semiconductor region. The method further includes removing the dummy gate stack to form a trench in the first ILD, forming a low-k gate spacer in the trench, forming a replacement gate dielectric extending into the trench, forming a metal layer to fill the trench, and performing a planarization to remove excess portions of the replacement gate dielectric and the metal layer to form a gate dielectric and a metal gate, respectively. A source region and a drain region are then formed on opposite sides of the metal gate.
    Type: Application
    Filed: November 8, 2023
    Publication date: February 29, 2024
    Inventors: Kuo-Hua Pan, Je-Wei Hsu, Hua Feng Chen, Jyun-Ming Lin, Chen-Huang Peng, Min-Yann Hsieh, Java Wu
  • Publication number: 20240063293
    Abstract: Embodiments provide a method for forming a semiconductor device structure, includes forming a fin structure having first semiconductor layers and second semiconductor layers alternatingly stacked thereover, forming a sacrificial gate structure over a portion of the fin structure, removing portions of the sacrificial gate structure to expose the first and second semiconductor layers, removing portions of the second semiconductor layers to expose portions of each of the first semiconductor layers. The method includes surrounding the exposed portions of each of the first semiconductor layers with a cladding layer, wherein the cladding layer is formed of a material chemically different from the first semiconductor layers, and the cladding layer has a first atomic percentage of germanium.
    Type: Application
    Filed: August 19, 2022
    Publication date: February 22, 2024
    Inventors: Ta-Chun LIN, Yu-San CHIEN, Chun-Sheng LIANG, Kuo-Hua PAN, Jhon Jhy LIAW
  • Publication number: 20240063294
    Abstract: A method of forming a semiconductor device structure is provided. The method includes forming a plurality of dummy gates over a substrate and performing a first etch step and a second etch step on the substrate exposed between the dummy gates. The first etch step includes an anisotropic etching process and an isotropic etching process. The second includes an isotropic etching step.
    Type: Application
    Filed: August 19, 2022
    Publication date: February 22, 2024
    Inventors: Ta-Chun LIN, Jyun-Yang SHEN, Hsiang-Yu LAI, Shih-Chang TSAI, Chun-Jun LIN, Kuo-Hua PAN, Jhon Jhy LIAW
  • Patent number: 11908735
    Abstract: Interconnect structures and corresponding techniques for forming the interconnect structures are disclosed herein. An exemplary interconnect structure includes a conductive feature that includes cobalt and a via disposed over the conductive feature. The via includes a first via barrier layer disposed over the conductive feature, a second via barrier layer disposed over the first via barrier layer, and a via bulk layer disposed over the second via barrier layer. The first via barrier layer includes titanium, and the second via barrier layer includes titanium and nitrogen. The via bulk layer can include tungsten and/or cobalt. A capping layer may be disposed over the conductive feature, where the via extends through the capping layer to contact the conductive feature. In some implementations, the capping layer includes cobalt and silicon.
    Type: Grant
    Filed: July 28, 2022
    Date of Patent: February 20, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yu-Jen Chang, Min-Yann Hsieh, Hua Feng Chen, Kuo-Hua Pan
  • Publication number: 20240055481
    Abstract: Semiconductor structures and methods for forming the same are provided. The semiconductor structure includes a gate structure formed over a substrate, and a first source/drain (S/D) structure formed adjacent to the gate structure. The semiconductor structure includes an S/D contact structure formed over the first S/D structure, and a dielectric wall formed below the gate structure and the S/D contact structure. The dielectric wall has a first portion directly below the S/D contact structure and a second portion directly below the gate structure, the first portion has a first height along a vertical direction, the second portion has a second height along the vertical direction, and the first height is smaller than the second height.
    Type: Application
    Filed: August 12, 2022
    Publication date: February 15, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ta-Chun LIN, Kuo-Hua PAN, Chih-Hao CHANG, Jhon-Jhy LIAW