Patents by Inventor Hui-Yu Lee

Hui-Yu Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11941210
    Abstract: A detection circuit is provided herein, which includes a first transistor, a second transistor, a third transistor, a light sensor, a capacitor, and a fourth transistor. The first transistor has a control terminal, a first terminal, and a second terminal. The second transistor is coupled to the control terminal. The third transistor is coupled to the control terminal and the second terminal. The light sensor is coupled to the control terminal. The capacitor is coupled to the control terminal. The fourth transistor is coupled to the second terminal.
    Type: Grant
    Filed: November 21, 2022
    Date of Patent: March 26, 2024
    Assignee: INNOLUX CORPORATION
    Inventors: Ya-Li Tsai, Hui-Ching Yang, Yang-Jui Huang, Te-Yu Lee
  • Publication number: 20240045322
    Abstract: A method for making a IC is provided, including: identifying, in a schematic, first and second edge elements, which edge elements including devices whose layout patterns are configured to conform to a first layout grid; identifying all the elements between the first and second edge elements, at least one of the identified elements including a device whose layout pattern is configured to conform to a second layout grid that is finer than the first layout grid; and calculating a spatial quantity of a combined layout pattern of the identified elements between the first and second edge elements to determine whether the combined layout pattern conforms to the first layout grid.
    Type: Application
    Filed: October 20, 2023
    Publication date: February 8, 2024
    Inventors: YU-HAO CHEN, HUI-YU LEE, JUI-FENG KUAN, CHIEN-TE WU
  • Patent number: 11852967
    Abstract: A method for making a IC is provided, including: identifying, in a schematic, first and second edge elements, which edge elements including devices whose layout patterns are configured to conform to a first layout grid; identifying all the elements between the first and second edge elements, at least one of the identified elements including a device whose layout pattern is configured to conform to a second layout grid that is finer than the first layout grid; and calculating a spatial quantity of a combined layout pattern of the identified elements between the first and second edge elements to determine whether the combined layout pattern conforms to the first layout grid.
    Type: Grant
    Filed: March 23, 2021
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Yu-Hao Chen, Hui-Yu Lee, Jui-Feng Kuan, Chien-Te Wu
  • Publication number: 20230384538
    Abstract: Disclosed are apparatus and methods for a silicon photonic (SiPh) structure comprising the integration of an electrical integrated circuit (EIC); a photonic integrated circuit (PIC) disposed on top of the EIC; two or more polymer waveguides (PWGs) disposed on top of the PIC and formed by layers of cladding polymer and core polymer; and an integration fan-out redistribution (InFO RDL) layer disposed on top of the two or more PWGs. The operation of PWGs is based on the refractive indexes of the cladding and core polymers. Inter-layer optical signals coupling is provided by edge-coupling, reflective prisms and grating coupling. A wafer-level system implements a SiPh structure die and provides inter-die signal optical interconnections among the PWGs.
    Type: Application
    Filed: August 9, 2023
    Publication date: November 30, 2023
    Inventors: Yu-Hao CHEN, Hui-Yu Lee, Chung-Ming Weng, Jui-Feng Kuan, Chien-Te Wu
  • Publication number: 20230389428
    Abstract: A method of manufacturing a semiconductor structure includes forming a first dielectric layer surrounding an optical component. The method further includes forming a thermal control mechanism adjacent to the optical component and at least partially surrounded by the first dielectric layer. Forming the thermal control mechanism includes forming a first thermoelectric member having a first conductivity type, forming a second thermoelectric member having a second conductivity type opposite to the first conductivity type, wherein the second thermoelectric member is opposite to the first thermoelectric member; and forming a conductive structure over and electrically connected to the thermal control mechanism. The method further includes forming a second dielectric layer over the first dielectric layer and surrounding the conductive structure.
    Type: Application
    Filed: August 10, 2023
    Publication date: November 30, 2023
    Inventors: Yu-Hao CHEN, Hui Yu LEE, Jui-Feng KUAN
  • Publication number: 20230384537
    Abstract: A method of making a semiconductor device includes defining an opening extending from a first side of a substrate to a second side of the substrate, wherein the first side of the substrate is opposite the second side of the substrate. The method further includes depositing a dielectric material into the opening, wherein the dielectric material has a first refractive index. The method further includes etching the dielectric material to define a core opening extending from the first side of the substrate to the second side of the substrate. The method further includes depositing a core material into the core opening, wherein the core material has a second refractive index different from the first refractive index, and the core material is optically transparent. The method further includes removing excess core material from a surface of the substrate.
    Type: Application
    Filed: July 25, 2023
    Publication date: November 30, 2023
    Inventors: Yu-Hao CHEN, Chung-Ming WENG, Tsung-Yuan YU, Hui Yu LEE, Hung-Yi KUO, Jui-Feng KUAN, Chien-Te WU
  • Publication number: 20230352366
    Abstract: The present disclosure describes heat dissipating structures that can be formed either in functional or non-functional areas of three-dimensional system on integrated chip structures. In some embodiments, the heat dissipating structures maintain an average operating temperature of memory dies or chips below about 90° C. For example, a structure includes a stack with chip layers, where each chip layer includes one or more chips and an edge portion. The structure further includes a thermal interface material disposed on the edge portion of each chip layer, a thermal interface material layer disposed over a top chip layer of the stack, and a heat sink over the thermal interface material layer.
    Type: Application
    Filed: July 5, 2023
    Publication date: November 2, 2023
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Po-Hsiang HUANG, Chin-chou Liu, Chin-Her Chien, Fong-yuan Chang, Hui Yu Lee
  • Publication number: 20230299052
    Abstract: An integrated circuit includes a first semiconductor wafer, a second semiconductor wafer, a first interconnect structure, a first through substrate via, and an under bump metallurgy (UBM) layer. The first semiconductor wafer has a first side of the first semiconductor wafer. The second semiconductor wafer is coupled to the first semiconductor wafer, and is over the first semiconductor wafer. The second semiconductor wafer has a first device in a first side of the second semiconductor wafer. The first interconnect structure is on a second side of the first semiconductor wafer opposite from the first side of the first semiconductor wafer. The first interconnect structure includes an inductor below the first semiconductor wafer. The first through substrate via extends through the first semiconductor wafer. The first through substrate via electrically couples the inductor to at least the first device. The UBM layer is on a surface of the first interconnect structure.
    Type: Application
    Filed: May 23, 2023
    Publication date: September 21, 2023
    Inventors: Chih-Lin CHEN, Hui-Yu LEE, Fong-Yuan CHANG, Po-Hsiang HUANG, Chin-Chou LIU
  • Patent number: 11754794
    Abstract: A semiconductor device includes a substrate. The semiconductor device further includes a waveguide on a first side of the substrate. The semiconductor device further includes a photodetector (PD) on a second side of the substrate, opposite the first side of the substrate. The semiconductor device further includes an optical through via (OTV) optically connecting the PD with the waveguide, wherein the OTV extends through the substrate from the first side of the substrate to the second side of the substrate.
    Type: Grant
    Filed: July 16, 2021
    Date of Patent: September 12, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yu-Hao Chen, Chung-Ming Weng, Tsung-Yuan Yu, Hui Yu Lee, Hung-Yi Kuo, Jui-Feng Kuan, Chien-Te Wu
  • Patent number: 11749584
    Abstract: The present disclosure describes heat dissipating structures that can be formed either in functional or non-functional areas of three-dimensional system on integrated chip structures. In some embodiments, the heat dissipating structures maintain an average operating temperature of memory dies or chips below about 90° C. For example, a structure includes a stack with chip layers, where each chip layer includes one or more chips and an edge portion. The structure further includes a thermal interface material disposed on the edge portion of each chip layer, a thermal interface material layer disposed over a top chip layer of the stack, and a heat sink over the thermal interface material layer.
    Type: Grant
    Filed: August 16, 2021
    Date of Patent: September 5, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Po-Hsiang Huang, Chin-Chou Liu, Chin-Her Chien, Fong-yuan Chang, Hui Yu Lee
  • Patent number: 11740415
    Abstract: Disclosed are apparatus and methods for a silicon photonic (SiPh) structure comprising the integration of an electrical integrated circuit (EIC); a photonic integrated circuit (PIC) disposed on top of the EIC; two or more polymer waveguides (PWGs) disposed on top of the PIC and formed by layers of cladding polymer and core polymer; and an integration fan-out redistribution (InFO RDL) layer disposed on top of the two or more PWGs. The operation of PWGs is based on the refractive indexes of the cladding and core polymers. Inter-layer optical signals coupling is provided by edge-coupling, reflective prisms and grating coupling. A wafer-level system implements a SiPh structure die and provides inter-die signal optical interconnections among the PWGs.
    Type: Grant
    Filed: May 14, 2021
    Date of Patent: August 29, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yu-Hao Chen, Hui-Yu Lee, Chung-Ming Weng, Jui-Feng Kuan, Chien-Te Wu
  • Publication number: 20230268301
    Abstract: A method and a system for verifying an integrated circuit stack having a silicon photonic (SIPH) device is introduced. A single first dummy layer is added to at least one terminal of the SIPH device in a first layout of the first integrated circuit, wherein a shape of the single first dummy layer added to the at least one terminal of the SIPH device maps a shape of the at least one terminal of the SIPH device. A first layout versus schematic (LVS) check is performed on the first integrated circuit based on the single first dummy layer added to the at least one terminal of the SIPH device to verify a connection of the SIPH device in the first integrated circuit.
    Type: Application
    Filed: April 25, 2023
    Publication date: August 24, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Feng-Wei Kuo, Hui-Yu Lee
  • Publication number: 20230228939
    Abstract: An optical circuit includes one or more input waveguides, a plurality of output waveguides, and a reflector structure. At least a portion of the reflector structure forms an interface with the one or more input waveguides. The portion of the reflector structure has a smaller refractive index than the one or more input waveguides. An electrical circuit is electrically coupled to the optical circuit. The electrical circuit generates and sends different electrical signals to the reflector structure. In response to the reflector structure receiving the different electrical signals, a carrier concentration level at or near the interface or a temperature at or near the interface changes, such that incident radiation received from the one or more input waveguides is tunably reflected by the reflector structure into a targeted output waveguide of the plurality of output waveguides.
    Type: Application
    Filed: March 20, 2023
    Publication date: July 20, 2023
    Inventors: Yu-Hao Chen, Hui Yu Lee, Jui-Feng Kuan, Chien-Te Wu
  • Publication number: 20230225014
    Abstract: A photonic heater is provided. The photonic heater includes a current source and a transfer circuit. The transfer circuit connected to the current source. The photonic heater further includes a heating element. The heating element is connected to the transfer circuit. The transfer circuit is operable to regulate an amount of current being transferred from the current court to the heating element.
    Type: Application
    Filed: December 27, 2022
    Publication date: July 13, 2023
    Inventor: HUI YU LEE
  • Patent number: 11694973
    Abstract: The present disclosure relates to a semiconductor device and a manufacturing method, and more particularly to a semiconductor interposer device. The semiconductor interposer device includes a substrate and a first metallization layer formed on the substrate. A first dielectric layer is formed on the first metallization layer and a second metallization layer is formed on the substrate. A first conducting line is formed in the first metallization layer and second and third conducting lines are formed in the second metallization layer. A metal-insulator-metal (MIM) capacitor is formed in the first dielectric layer and over the first conducting line.
    Type: Grant
    Filed: June 23, 2021
    Date of Patent: July 4, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hui Yu Lee, Chin-Chou Liu, Cheng-Hung Yeh, Fong-Yuan Chang, Po-Hsiang Huang, Yi-Kan Cheng, Ka Fai Chang
  • Patent number: 11670610
    Abstract: A method and a system for verifying an integrated circuit stack having at least one silicon photonic device is introduced. A dummy layer and a dummy layer text are added to a terminal of at least one silicon photonic device of the integrated circuit. The method may perform a layout versus schematic check of the integrated circuit including the dummy layer and the dummy layer text.
    Type: Grant
    Filed: February 26, 2020
    Date of Patent: June 6, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Feng-Wei Kuo, Hui-Yu Lee
  • Patent number: 11658157
    Abstract: An integrated circuit includes a first semiconductor wafer, a second semiconductor wafer, a first interconnect structure, an inductor, and a through substrate via. The first semiconductor wafer has a first device in a first side of the first semiconductor wafer. The second semiconductor wafer is over the first semiconductor wafer. The first interconnect structure is on a second side of the first semiconductor wafer opposite from the first side of the first semiconductor wafer. The inductor is below the first semiconductor wafer, and at least a portion of the inductor is within the first interconnect structure. The through substrate via extends through the first semiconductor wafer. The inductor is coupled to at least the first device by at least the through substrate via.
    Type: Grant
    Filed: June 10, 2021
    Date of Patent: May 23, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chih-Lin Chen, Hui-Yu Lee, Fong-Yuan Chang, Po-Hsiang Huang, Chin-Chou Liu
  • Patent number: 11609374
    Abstract: An optical circuit includes one or more input waveguides, a plurality of output waveguides, and a reflector structure. At least a portion of the reflector structure forms an interface with the one or more input waveguides. The portion of the reflector structure has a smaller refractive index than the one or more input waveguides. An electrical circuit is electrically coupled to the optical circuit. The electrical circuit generates and sends different electrical signals to the reflector structure. In response to the reflector structure receiving the different electrical signals, a carrier concentration level at or near the interface or a temperature at or near the interface changes, such that incident radiation received from the one or more input waveguides is tunably reflected by the reflector structure into a targeted output waveguide of the plurality of output waveguides.
    Type: Grant
    Filed: September 3, 2021
    Date of Patent: March 21, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yu-Hao Chen, Hui Yu Lee, Jui-Feng Kuan, Chien-Te Wu
  • Publication number: 20230031333
    Abstract: An integrated circuit device includes a semiconductor substrate, an active area in a surface of the semiconductor substrate, a gate electrode, source and drain regions in the active area on opposite sides of the gate electrode to form a transistor, an active conductive pattern connected to a first plurality of electrical contacts for applying electrical signals to the transistor, and a dummy conductive pattern connected to a first plurality of thermal contacts for removing heat from the first active area, where the thermal contacts are electrically isolated from receiving the electrical signals applied to the electrical contacts.
    Type: Application
    Filed: January 13, 2022
    Publication date: February 2, 2023
    Inventors: Yu-Hao CHEN, Hui Yu LEE, Jui-Feng KUAN, Chien-Te WU
  • Patent number: 11545298
    Abstract: An entangled inductor structure generates opposite polarity internal magnetic fields therein to substantially reduce, or cancel, external magnetic fields propagating outside of the entangled inductor structure. These reduced external magnetic fields propagating outside of the entangled inductor structure effectively reduce a keep out zone (KOZ) between the entangled inductor structure and other electrical, mechanical, and/or electro-mechanical components. This allows the entangled inductor structure to be situated closer to these other electrical, mechanical, and/or electro-mechanical components within the IC as compared to conventional inductors which generate larger external magnetic fields.
    Type: Grant
    Filed: February 5, 2021
    Date of Patent: January 3, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ka Fai Chang, Chin-Chou Liu, Fong-Yuan Chang, Hui Yu Lee, Yi-Kan Cheng