Patents by Inventor Huiling Shang

Huiling Shang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210273078
    Abstract: A semiconductor structure includes a semiconductor substrate, an oxide layer disposed over the semiconductor substrate, a high-k metal gate structure (HKMG) interleaved with the stack of semiconductor layers, and an epitaxial source/drain (S/D) feature disposed adjacent to the HKMG, wherein a bottom portion of the epitaxial S/D feature is defined by the oxide layer.
    Type: Application
    Filed: November 20, 2020
    Publication date: September 2, 2021
    Inventors: Xusheng Wu, Chang-Miao Liu, Huiling Shang
  • Publication number: 20210226018
    Abstract: A method including providing a device including a gate structure and a source/drain feature adjacent to the gate structure. An insulating layer (e.g., CESL, ILD) is formed over the source/drain feature. A trench is etched in the insulating layer to expose a surface of the source/drain feature. A semiconductor material is then formed in the etched trench on the surface of the source/drain feature. The semiconductor material is converted to a silicide.
    Type: Application
    Filed: January 17, 2020
    Publication date: July 22, 2021
    Inventors: Xusheng WU, Chang-Miao LUI, Ying-Keung LEUNG, Huiling SHANG, Youbo LIN
  • Publication number: 20210118875
    Abstract: Integrated circuit devices and methods of forming the same are provided. An integrated circuit device in an embodiment includes a first multi-gate active region over a substrate, a second multi-gate active region over the substrate, a first gate structure over the first multi-gate active region, a second gate structure over the second multi-gate active region, and a dielectric feature disposed between the first gate structure and the second gate structure. The dielectric feature includes an oxygen-free layer in contact with the first gate structure and the second gate structure, a silicon oxide layer over the oxygen-free layer, and a transition layer disposed between the oxygen-free layer and the silicon oxide layer. An oxygen content of the transition layer is smaller than an oxygen content of the silicon oxide layer.
    Type: Application
    Filed: October 18, 2019
    Publication date: April 22, 2021
    Inventors: Xusheng Wu, Chang-Miao Liu, Huiling Shang
  • Publication number: 20210119015
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a semiconductor substrate and a metal gate stack over the semiconductor substrate. The semiconductor device structure also includes a spacer element over a sidewall of the metal gate stack. The spacer element is doped with a dopant, and the dopant reduces a dielectric constant of the spacer element. An atomic concentration of the dopant decreases along a direction from an inner surface of the spacer element adjacent to the metal gate stack towards an outer surface of the spacer element.
    Type: Application
    Filed: December 28, 2020
    Publication date: April 22, 2021
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Xusheng WU, Chang-Miao LIU, Huiling SHANG
  • Publication number: 20210104631
    Abstract: A semiconductor device and a method of forming the same are provided. A semiconductor device of the present disclosure includes a first fin including a first source/drain region, a second fin including a second source/drain region, a first isolation layer disposed between the first source/drain region and the second source/drain region, and a second isolation layer disposed over the first isolation layer. A first portion of the first isolation layer is disposed on sidewalls of the first source/drain region and a second portion of the first isolation layer is disposed on sidewalls of the second source/drain region. A portion of the second isolation layer is disposed between the first portion and second portion of the first isolation layer.
    Type: Application
    Filed: December 15, 2020
    Publication date: April 8, 2021
    Inventors: Xusheng Wu, Chang-Miao Liu, Huiling Shang
  • Publication number: 20210083113
    Abstract: Examples of an integrated circuit with a strain-generating liner and a method for forming the integrated circuit are provided herein. In some examples, an integrated circuit device includes a substrate, a fin extending from the substrate, and a gate disposed on the fin. The gate has a bottom portion disposed towards the fin and a top portion disposed on the bottom portion. A liner is disposed on a side surface of the bottom portion of the gate such that the top portion of the gate is free of the liner. In some such examples, the liner is configured to produce a channel strain.
    Type: Application
    Filed: November 16, 2020
    Publication date: March 18, 2021
    Inventors: Xusheng Wu, Chang-Miao Liu, Huiling Shang
  • Patent number: 10879373
    Abstract: A structure and a formation method of a semiconductor device are provided. The method includes forming a dummy gate stack over a semiconductor substrate. The dummy gate stack has a dummy gate electrode and a dummy gate dielectric layer. The method also includes forming spacer elements over sidewalls of the dummy gate stack and partially removing the dummy gate electrode to form a recess. The method further includes partially removing the spacer elements to enlarge the recess and removing a remaining portion of the dummy gate electrode to expose the dummy gate dielectric layer. In addition, the method includes doping the spacer elements after the remaining portion of the dummy gate electrode is removed and removing the dummy gate dielectric layer. The method further includes forming a metal gate stack in the recess.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: December 29, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Xusheng Wu, Chang-Miao Liu, Huiling Shang
  • Publication number: 20200395480
    Abstract: A semiconductor device and a method of forming the same are provided. A semiconductor device of the present disclosure includes a first fin including a first source/drain region, a second fin including a second source/drain region, a first isolation layer disposed between the first source/drain region and the second source/drain region, and a second isolation layer disposed over the first isolation layer. A first portion of the first isolation layer is disposed on sidewalls of the first source/drain region and a second portion of the first isolation layer is disposed on sidewalls of the second source/drain region. A portion of the second isolation layer is disposed between the first portion and second portion of the first isolation layer.
    Type: Application
    Filed: June 14, 2019
    Publication date: December 17, 2020
    Inventors: Xusheng Wu, Chang-Miao Liu, Huiling Shang
  • Patent number: 10868174
    Abstract: A semiconductor device and a method of forming the same are provided. A semiconductor device of the present disclosure includes a first fin including a first source/drain region, a second fin including a second source/drain region, a first isolation layer disposed between the first source/drain region and the second source/drain region, and a second isolation layer disposed over the first isolation layer. A first portion of the first isolation layer is disposed on sidewalls of the first source/drain region and a second portion of the first isolation layer is disposed on sidewalls of the second source/drain region. A portion of the second isolation layer is disposed between the first portion and second portion of the first isolation layer.
    Type: Grant
    Filed: June 14, 2019
    Date of Patent: December 15, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Xusheng Wu, Chang-Miao Liu, Huiling Shang
  • Patent number: 10840375
    Abstract: Examples of an integrated circuit with a strain-generating liner and a method for forming the integrated circuit are provided herein. In some examples, an integrated circuit device includes a substrate, a fin extending from the substrate, and a gate disposed on the fin. The gate has a bottom portion disposed towards the fin and a top portion disposed on the bottom portion. A liner is disposed on a side surface of the bottom portion of the gate such that the top portion of the gate is free of the liner. In some such examples, the liner is configured to produce a channel strain.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: November 17, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Xusheng Wu, Chang-Miao Liu, Huiling Shang
  • Publication number: 20200343362
    Abstract: A structure and a formation method of a semiconductor device are provided. The method includes forming a dummy gate stack over a semiconductor substrate. The dummy gate stack has a dummy gate electrode and a dummy gate dielectric layer. The method also includes forming spacer elements over sidewalls of the dummy gate stack and partially removing the dummy gate electrode to form a recess. The method further includes partially removing the spacer elements to enlarge the recess and removing a remaining portion of the dummy gate electrode to expose the dummy gate dielectric layer. In addition, the method includes doping the spacer elements after the remaining portion of the dummy gate electrode is removed and removing the dummy gate dielectric layer. The method further includes forming a metal gate stack in the recess.
    Type: Application
    Filed: April 23, 2019
    Publication date: October 29, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Xusheng WU, Chang-Miao LIU, Huiling SHANG
  • Publication number: 20200105909
    Abstract: Aspects of the disclosure provide a method for fabricating a semiconductor device. A pre-stress liner is formed over a structure. The structure includes a gate structure having sidewalls. A protection layer is formed. The protection layer covers a first portion of the pre-stress liner that extends along the sidewalls of the gate structure, and exposes a second portion of the pre-stress liner that is away from the sidewalls of the gate structure. An oxygen-containing layer is formed. The oxygen-containing layer covers the pre-stress liner and the protection layer. The oxygen-containing layer is separated from the first portion of the pre-stress liner by the protection layer. The structure is annealed such that the second portion of the pre-stress liner oxidizes by receiving oxygen from the oxygen-containing layer, while the first portion of the pre-stress liner remains unoxidized due to the protection layer.
    Type: Application
    Filed: March 1, 2019
    Publication date: April 2, 2020
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Xusheng Wu, Chang-Miao Liu, Huiling Shang
  • Publication number: 20200006558
    Abstract: Examples of an integrated circuit with a strain-generating liner and a method for forming the integrated circuit are provided herein. In some examples, an integrated circuit device includes a substrate, a fin extending from the substrate, and a gate disposed on the fin. The gate has a bottom portion disposed towards the fin and a top portion disposed on the bottom portion. A liner is disposed on a side surface of the bottom portion of the gate such that the top portion of the gate is free of the liner. In some such examples, the liner is configured to produce a channel strain.
    Type: Application
    Filed: November 16, 2018
    Publication date: January 2, 2020
    Inventors: Xusheng Wu, Chang-Miao Liu, Huiling Shang
  • Patent number: 10242980
    Abstract: A bulk semiconductor substrate including a first semiconductor material is provided. A well trapping layer including a second semiconductor material and a dopant is formed on a top surface of the bulk semiconductor substrate. The combination of the second semiconductor material and the dopant within the well trapping layer is selected such that diffusion of the dopant is limited within the well trapping layer. A device semiconductor material layer including a third semiconductor material can be epitaxially grown on the top surface of the well trapping layer. The device semiconductor material layer, the well trapping layer, and an upper portion of the bulk semiconductor substrate are patterned to form at least one semiconductor fin. Semiconductor devices formed in each semiconductor fin can be electrically isolated from the bulk semiconductor substrate by the remaining portions of the well trapping layer.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: March 26, 2019
    Assignee: International Business Machines Corporation
    Inventors: Henry K. Utomo, Kangguo Cheng, Ramachandra Divakaruni, Ravikumar Ramachandran, Huiling Shang, Reinaldo A. Vega
  • Publication number: 20170040320
    Abstract: A bulk semiconductor substrate including a first semiconductor material is provided. A well trapping layer including a second semiconductor material and a dopant is formed on a top surface of the bulk semiconductor substrate. The combination of the second semiconductor material and the dopant within the well trapping layer is selected such that diffusion of the dopant is limited within the well trapping layer. A device semiconductor material layer including a third semiconductor material can be epitaxially grown on the top surface of the well trapping layer. The device semiconductor material layer, the well trapping layer, and an upper portion of the bulk semiconductor substrate are patterned to form at least one semiconductor fin. Semiconductor devices formed in each semiconductor fin can be electrically isolated from the bulk semiconductor substrate by the remaining portions of the well trapping layer.
    Type: Application
    Filed: October 21, 2016
    Publication date: February 9, 2017
    Inventors: Henry K. Utomo, Kangguo Cheng, Ramachandra Divakaruni, Ravikumar Ramachandran, Huiling Shang, Reinaldo A. Vega
  • Patent number: 9536900
    Abstract: A method of manufacturing a semiconductor device, by etching a region of an SOI substrate so that only a portion of the original semiconductor is present above the insulator layer. After etching has occurred, a different semiconductor material is grown in the etched region, and fins are formed. An isolation layer is deposited to a height above that the base semiconductor of the etched region.
    Type: Grant
    Filed: May 22, 2014
    Date of Patent: January 3, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Ravikumar Ramachandran, Huiling Shang, Keith Tabakman, Henry K. Utomo, Reinaldo A. Vega
  • Patent number: 9496258
    Abstract: A bulk semiconductor substrate including a first semiconductor material is provided. A well trapping layer including a second semiconductor material and a dopant is formed on a top surface of the bulk semiconductor substrate. The combination of the second semiconductor material and the dopant within the well trapping layer is selected such that diffusion of the dopant is limited within the well trapping layer. A device semiconductor material layer including a third semiconductor material can be epitaxially grown on the top surface of the well trapping layer. The device semiconductor material layer, the well trapping layer, and an upper portion of the bulk semiconductor substrate are patterned to form at least one semiconductor fin. Semiconductor devices formed in each semiconductor fin can be electrically isolated from the bulk semiconductor substrate by the remaining portions of the well trapping layer.
    Type: Grant
    Filed: October 9, 2014
    Date of Patent: November 15, 2016
    Assignee: International Business Machines Corporation
    Inventors: Henry K. Utomo, Kangguo Cheng, Ramachandra Divakaruni, Ravikumar Ramachandran, Huiling Shang, Reinaldo A. Vega
  • Publication number: 20150340381
    Abstract: A method of manufacturing a semiconductor device, by etching a region of an SOI substrate so that only a portion of the original semiconductor is present above the insulator layer. After etching has occurred, a different semiconductor material is grown in the etched region, and fins are formed. An isolation layer is deposited to a height above that the base semiconductor of the etched region.
    Type: Application
    Filed: May 22, 2014
    Publication date: November 26, 2015
    Applicant: International Business Machines Corporation
    Inventors: Ravikumar Ramachandran, Huiling Shang, Keith Tabakman, Henry K. Utomo, Reinaldo A. Vega
  • Patent number: 9190520
    Abstract: A fin structure includes an optional doped well, a disposable single crystalline semiconductor material portion, and a top semiconductor portion formed on a substrate. A disposable gate structure straddling the fin structure is formed, and end portions of the fin structure are removed to form end cavities. Doped semiconductor material portions are formed on sides of a stack of the disposable single crystalline semiconductor material portion and a channel region including the top semiconductor portion. The disposable single crystalline semiconductor material portion may be replaced with a dielectric material portion after removal of the disposable gate structure or after formation of the stack. The gate cavity is filled with a gate dielectric and a gate electrode. The channel region is stressed by the doped semiconductor material portions, and is electrically isolated from the substrate by the dielectric material portion.
    Type: Grant
    Filed: September 9, 2014
    Date of Patent: November 17, 2015
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Henry K. Utomo, Kangguo Cheng, Ramachandra Divakaruni, Dechao Guo, Myung-Hee Na, Ravikumar Ramachandran, Kern Rim, Huiling Shang
  • Patent number: 9029913
    Abstract: A first silicon-germanium alloy layer is formed on a semiconductor substrate including silicon. A stack of a first silicon layer and a second silicon-germanium alloy layer is formed over a first region of the first silicon-germanium alloy layer, and a second silicon layer thicker than the first silicon layer is formed over a second region of the first silicon-germanium alloy layer. At least one first semiconductor fin is formed in the first region, and at least one second semiconductor fin is formed in the second region. Remaining portions of the first silicon layer are removed to provide at least one silicon-germanium alloy fin in the first region, while at least one silicon fin is provided in the second region. Fin field effect transistors can be formed on the at least one silicon-germanium alloy fin and the at least one silicon fin.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: May 12, 2015
    Assignee: International Business Machines Corporation
    Inventors: Henry K. Utomo, Kangguo Cheng, Ramachandra Divakaruni, Myung-Hee Na, Ravikumar Ramachandran, Huiling Shang