Patents by Inventor Huiling Shang

Huiling Shang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7790538
    Abstract: A structure and method of fabrication for PFET devices in a compressively strained Ge layer is disclosed. The fabrication method of such devices is compatible with standard CMOS technology and it is fully scalable. The processing includes selective epitaxial depositions of an over 50% Ge content buffer layer, a pure Ge layer, and a SiGe top layer. Fabricated buried channel PMOS devices hosted in the compressively strained Ge layer show superior device characteristics relative to similar Si devices.
    Type: Grant
    Filed: May 10, 2008
    Date of Patent: September 7, 2010
    Assignee: International Business Machines Corporation
    Inventors: Huiling Shang, Meikei Ieong, Jack Oon Chu, Kathryn W. Guarini
  • Patent number: 7682968
    Abstract: A method for forming germano-silicide contacts atop a Ge-containing layer that is more resistant to etching than are conventional silicide contacts that are formed from a pure metal is provided. The method of the present invention includes first providing a structure which comprises a plurality of gate regions located atop a Ge-containing substrate having source/drain regions therein. After this step of the present invention, a Si-containing metal layer is formed atop the said Ge-containing substrate. In areas that are exposed, the Ge-containing substrate is in contact with the Si-containing metal layer. Annealing is then performed to form a germano-silicide compound in the regions in which the Si-containing metal layer and the Ge-containing substrate are in contact; and thereafter, any unreacted Si-containing metal layer is removed from the structure using a selective etch process. In some embodiments, an additional annealing step can follow the removal step.
    Type: Grant
    Filed: April 23, 2008
    Date of Patent: March 23, 2010
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., Roy A. Carruthers, Christophe Detavernier, Simon Gaudet, Christian Lavoie, Huiling Shang
  • Publication number: 20090212366
    Abstract: A FINFET-containing structure having multiple FINs that are merged together without source/drain contact pads or a local interconnect is provided. In accordance with the present invention, the inventive structure includes a plurality of semiconducting bodies (i.e., FINs) which extend above a surface of a substrate. A common patterned gate stack surrounds the plurality of semiconducting bodies and a nitride-containing spacer is located on sidewalls of the common patterned gate stack. An epitaxial semiconductor layer is used to merge each of the semiconducting bodies together.
    Type: Application
    Filed: May 1, 2009
    Publication date: August 27, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Leland Chang, Wilfried E. Haensch, Meikei Ieong, Ghavam Shahidi, Huiling Shang
  • Patent number: 7521376
    Abstract: A method and structure in which Ge-based semiconductor devices such as FETs and MOS capacitors can be obtained are provided. Specifically, the present invention provides a method of forming a semiconductor device including a stack including a dielectric layer and a conductive material located on and/or within a Ge-containing material (layer or wafer) in which the surface thereof is non-oxygen chalcogen rich. By providing a non-oxygen chalcogen rich interface, the formation of undesirable interfacial compounds during and after dielectric growth is suppressed and interfacial traps are reduced in density.
    Type: Grant
    Filed: October 26, 2005
    Date of Patent: April 21, 2009
    Assignee: International Business Machines Corporation
    Inventors: Martin M. Frank, Steven J. Koester, John A. Ott, Huiling Shang
  • Patent number: 7449782
    Abstract: A method for forming germano-silicide contacts atop a Ge-containing layer that is more resistant to etching than are conventional silicide contacts that are formed from a pure metal is provided. The method of the present invention includes first providing a structure which comprises a plurality of gate regions located atop a Ge-containing substrate having source/drain regions therein. After this step of the present invention, a Si-containing metal layer is formed atop the said Ge-containing substrate. In areas that are exposed, the Ge-containing substrate is in contact with the Si-containing metal layer. Annealing is then performed to form a germano-silicide compound in the regions in which the Si-containing metal layer and the Ge-containing substrate are in contact; and thereafter, any unreacted Si-containing metal layer is removed from the structure using a selective etch process. In some embodiments, an additional annealing step can follow the removal step.
    Type: Grant
    Filed: May 4, 2004
    Date of Patent: November 11, 2008
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., Roy A. Carruthers, Christophe Detavernier, Simon Gaudet, Christian Lavoie, Huiling Shang
  • Publication number: 20080248616
    Abstract: A structure and method of fabrication for PFET devices in a compressively strained Ge layer is disclosed. The fabrication method of such devices is compatible with standard CMOS technology and it is fully scalable. The processing includes selective epitaxial depositions of an over 50% Ge content buffer layer, a pure Ge layer, and a SiGe top layer. Fabricated buried channel PMOS devices hosted in the compressively strained Ge layer show superior device characteristics relative to similar Si devices.
    Type: Application
    Filed: May 10, 2008
    Publication date: October 9, 2008
    Applicant: International Business Machines Corporation
    Inventors: Huiling Shang, Meikei Ieong, Jack Oon Chu, Kathryn W. Guarini
  • Publication number: 20080227283
    Abstract: A method for forming gennano-silicide contacts atop a Ge-containing layer that is more resistant to etching than are conventional silicide contacts that are formed from a pure metal is provided. The method of the present invention includes first providing a structure which comprises a plurality of gate regions located atop a Ge-containing substrate having source/drain regions therein. After this step of the present invention, a Si-containing metal layer is formed atop the said Ge-containing substrate. In areas that are exposed, the Ge-containing substrate is in contact with the Si-containing metal layer. Annealing is then performed to form a germano-silicide compound in the regions in which the Si-containing metal layer and the Ge-containing substrate are in contact; and thereafter, any unreacted Si-containing metal layer is removed from the structure using a selective etch process. In some embodiments, an additional annealing step can follow the removal step.
    Type: Application
    Filed: April 23, 2008
    Publication date: September 18, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Cyril Cabral, Roy A. Carruthers, Christophe Detavernier, Simon Gaudet, Christian Lavoie, Huiling Shang
  • Publication number: 20080220606
    Abstract: A method for forming germano-silicide contacts atop a Ge-containing layer that is more resistant to etching than are conventional silicide contacts that are formed from a pure metal is provided. The method of the present invention includes first providing a structure which comprises a plurality of gate regions located atop a Ge-containing substrate having source/drain regions therein. After this step of the present invention, a Si-containing metal layer is formed atop the said Ge-containing substrate. In areas that are exposed, the Ge-containing substrate is in contact with the Si-containing metal layer. Annealing is then performed to form a germano-silicide compound in the regions in which the Si-containing metal layer and the Ge-containing substrate are in contact; and thereafter, any unreacted Si-containing metal layer is removed from the structure using a selective etch process. In some embodiments, an additional annealing step can follow the removal step.
    Type: Application
    Filed: April 23, 2008
    Publication date: September 11, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Cyril Cabral, Roy A. Carruthers, Christophe Detavernier, Simon Gaudet, Christian Lavoie, Huiling Shang
  • Patent number: 7387925
    Abstract: A structure and method of fabrication for PFET devices in a compressively strained Ge layer is disclosed. The fabrication method of such devices is compatible with standard CMOS technology and it is fully scalable. The processing includes selective epitaxial depositions of an over 50% Ge content buffer layer, a pure Ge layer, and a SiGe top layer. Fabricated buried channel PMOS devices hosted in the compressively strained Ge layer show superior device characteristics relative to similar Si devices.
    Type: Grant
    Filed: April 10, 2007
    Date of Patent: June 17, 2008
    Assignee: International Business Machines Corporation
    Inventors: Huiling Shang, Meikei Ieong, Jack Oon Chu, Kathryn W. Guarini
  • Publication number: 20070287256
    Abstract: A FINFET-containing structure having multiple FINs that are merged together without source/drain contact pads or a local interconnect is provided. In accordance with the present invention, the inventive structure includes a plurality of semiconducting bodies (i.e., FINs) which extend above a surface of a substrate. A common patterned gate stack surrounds the plurality of semiconducting bodies and a nitride-containing spacer is located on sidewalls of the common patterned gate stack. An epitaxial semiconductor layer is used to merge each of the semiconducting bodies together.
    Type: Application
    Filed: June 7, 2006
    Publication date: December 13, 2007
    Applicant: International Business Machines Corporation
    Inventors: Leland Chang, Wilfried E. Haensch, Meikei Ieong, Ghavam Shahidi, Huiling Shang
  • Publication number: 20070218621
    Abstract: A structure and method of fabrication for PFET devices in a compressively strained Ge layer is disclosed. The fabrication method of such devices is compatible with standard CMOS technology and it is fully scalable. The processing includes selective epitaxial depositions of an over 50% Ge content buffer layer, a pure Ge layer, and a SiGe top layer. Fabricated buried channel PMOS devices hosted in the compressively strained Ge layer show superior device characteristics relative to similar Si devices.
    Type: Application
    Filed: April 10, 2007
    Publication date: September 20, 2007
    Applicant: International Business Machines Corporation
    Inventors: Huiling Shang, Meikei Leong, Jack Chu, Kathryn Guarini
  • Patent number: 7244958
    Abstract: A structure and method of fabrication for PFET devices in a compressively strained Ge layer is disclosed. The fabrication method of such devices is compatible with standard CMOS technology and it is fully scalable. The processing includes selective epitaxial depositions of an over 50% Ge content buffer layer, a pure Ge layer, and a SiGe top layer. Fabricated buried channel PMOS devices hosted in the compressively strained Ge layer show superior device characteristics relative to similar Si devices.
    Type: Grant
    Filed: June 24, 2004
    Date of Patent: July 17, 2007
    Assignee: International Business Machines Corporation
    Inventors: Huiling Shang, Meikei Ieong, Jack Oon Chu, Kathryn W. Guarini
  • Publication number: 20070093074
    Abstract: A method and structure in which Ge-based semiconductor devices such as FETs and MOS capacitors can be obtained are provided. Specifically, the present invention provides a method of forming a semiconductor device including a stack including a dielectric layer and a conductive material located on and/or within a Ge-containing material (layer or wafer) in which the surface thereof is non-oxygen chalcogen rich. By providing a non-oxygen chalcogen rich interface, the formation of undesirable interfacial compounds during and after dielectric growth is suppressed and interfacial traps are reduced in density.
    Type: Application
    Filed: October 26, 2005
    Publication date: April 26, 2007
    Applicant: International Business Machines Corporation
    Inventors: Martin Frank, Steven Koester, John Ott, Huiling Shang
  • Publication number: 20060202279
    Abstract: A method for producing thin, below 6 nm of equivalent oxide thickness, germanium oxynitride layer on Ge-based materials for use as gate dielectric is disclosed. The method involves a two step process. First, nitrogen is incorporated in a surface layer of the Ge-based material. Second, the nitrogen incorporation is followed by an oxidation step. The method yields excellent thickness control of high quality gate dielectrics for Ge-based field effect devices, such as MOS transistors. Structures of devices having the thin germanium oxynitride gate dielectric and processors made with such devices are disclosed, as well.
    Type: Application
    Filed: April 29, 2006
    Publication date: September 14, 2006
    Applicant: International Business Machines Corporation
    Inventors: Evgeni Gousev, Huiling Shang, Christopher D'Emic, Paul Kozlowski
  • Patent number: 7078300
    Abstract: A method for producing thin, below 6 nm of equivalent oxide thickness, germanium oxynitride layer on Ge-based materials for use as gate dielectric is disclosed. The method involves a two step process. First, nitrogen is incorporated in a surface layer of the Ge-based material. Second, the nitrogen incorporation is followed by an oxidation step. The method yields excellent thickness control of high quality gate dielectrics for Ge-based field effect devices, such as MOS transistors. Structures of devices having the thin germanium oxynitride gate dielectric and processors made with such devices are disclosed, as well.
    Type: Grant
    Filed: September 27, 2003
    Date of Patent: July 18, 2006
    Assignee: International Business Machines Corporation
    Inventors: Evgeni Gousev, Huiling Shang, Christopher P. D'Emic, Paul M. Kozlowski
  • Publication number: 20050285097
    Abstract: A structure and method of fabrication for PFET devices in a compressively strained Ge layer is disclosed. The fabrication method of such devices is compatible with standard CMOS technology and it is fully scalable. The processing includes selective epitaxial depositions of an over 50% Ge content buffer layer, a pure Ge layer, and a SiGe top layer. Fabricated buried channel PMOS devices hosted in the compressively strained Ge layer show superior device characteristics relative to similar Si devices.
    Type: Application
    Filed: June 24, 2004
    Publication date: December 29, 2005
    Inventors: Huiling Shang, Meikei Ieong, Jack Chu, Kathryn Guarini
  • Publication number: 20050250301
    Abstract: A method for forming germano-silicide contacts atop a Ge-containing layer that is more resistant to etching than are conventional silicide contacts that are formed from a pure metal is provided. The method of the present invention includes first providing a structure which comprises a plurality of gate regions located atop a Ge-containing substrate having source/drain regions therein. After this step of the present invention, a Si-containing metal layer is formed atop the said Ge-containing substrate. In areas that are exposed, the Ge-containing substrate is in contact with the Si-containing metal layer. Annealing is then performed to form a germano-silicide compound in the regions in which the Si-containing metal layer and the Ge-containing substrate are in contact; and thereafter, any unreacted Si-containing metal layer is removed from the structure using a selective etch process. In some embodiments, an additional annealing step can follow the removal step.
    Type: Application
    Filed: May 4, 2004
    Publication date: November 10, 2005
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Cyril Cabral, Roy Carruthers, Christophe Detavernier, Simon Gaudet, Christian Lavoie, Huiling Shang
  • Publication number: 20050082624
    Abstract: A structure, and method of fabrication, for high performance semiconductor field effect devices is disclosed. These devices are having a gate dielectric containing a germanate material. In representative embodiments the gate dielectric is essentially a layer of a germanate material. The chemical composition of such materials is MezGexOy, where Me stands for a metal with high ion polarizability, and x, y, and z are non-zero integers. Such a gate dielectric is advantageous, from the point of view of dielectric constant, barrier height, carrier mobility, thermal stability, and interface stability.
    Type: Application
    Filed: October 20, 2003
    Publication date: April 21, 2005
    Inventors: Evgeni Gousev, Alessandro Callegari, Dianne Lacey, Deborah Neumayer, Huiling Shang
  • Publication number: 20050070122
    Abstract: A method for producing thin, below 6 nm of equivalent oxide thickness, germanium oxynitride layer on Ge-based materials for use as gate dielectric is disclosed. The method involves a two step process. First, nitrogen is incorporated in a surface layer of the Ge-based material. Second, the nitrogen incorporation is followed by an oxidation step. The method yields excellent thickness control of high quality gate dielectrics for Ge-based field effect devices, such as MOS transistors. Structures of devices having the thin germanium oxynitride gate dielectric and processors made with such devices are disclosed, as well.
    Type: Application
    Filed: September 27, 2003
    Publication date: March 31, 2005
    Inventors: Evgeni Gousev, Huiling Shang, Christopher D'Emic, Paul Kozlowski
  • Patent number: 6803266
    Abstract: A process for passivating the semiconductor-dielectric interface of a MOS structure to reduce the interface state density to a very low level. A particular example is a MOSFET having a tungsten electrode that in the past has prevented passivation of the underlying semiconductor-dielectric interface to an extent sufficient to reduce the interface state density to less than 5×1010/cm2−eV. Though substantially impervious to molecular hydrogen, thin tungsten layers are shown to be pervious to atomic hydrogen, enabling atomic hydrogen to be diffused through a tungsten electrode into an underlying semiconductor-dielectric interface.
    Type: Grant
    Filed: March 20, 2003
    Date of Patent: October 12, 2004
    Assignee: International Business Machines Corporation
    Inventors: Paul M. Solomon, Douglas A. Buchanan, Eduard A. Cartier, Kathryn W. Guarini, Fenton R. McFeely, Huiling Shang, John J. Yourkas