Patents by Inventor Huiming Bu

Huiming Bu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180323110
    Abstract: A method for filling gaps between structures includes forming a plurality of high aspect ratio structures adjacent to one another with gaps, forming a first dielectric layer on tops of the structures and conformally depositing a spacer dielectric layer over the structures. The spacer dielectric layer is removed from horizontal surfaces and a protection layer is conformally deposited over the structures. The gaps are filled with a flowable dielectric, which is recessed to a height along sidewalls of the structures by a selective etch process such that the protection layer protects the spacer dielectric layer on sidewalls of the structures. The first dielectric layer and the spacer dielectric layer are exposed above the height using a higher etch resistance than the protection layer to maintain dimensions of the spacer layer dielectric through the etching processes. The gaps are filled by a high density plasma fill.
    Type: Application
    Filed: July 18, 2018
    Publication date: November 8, 2018
    Inventors: Huiming Bu, Andrew M. Greene, Balasubramanian Pranatharthiharan, Ruilong Xie
  • Patent number: 10083861
    Abstract: A method for filling gaps between structures includes forming a plurality of high aspect ratio structures adjacent to one another with gaps, forming a first dielectric layer on tops of the structures and conformally depositing a spacer dielectric layer over the structures. The spacer dielectric layer is removed from horizontal surfaces and a protection layer is conformally deposited over the structures. The gaps are filled with a flowable dielectric, which is recessed to a height along sidewalls of the structures by a selective etch process such that the protection layer protects the spacer dielectric layer on sidewalls of the structures. The first dielectric layer and the spacer dielectric layer are exposed above the height using a higher etch resistance than the protection layer to maintain dimensions of the spacer layer dielectric through the etching processes. The gaps are filled by a high density plasma fill.
    Type: Grant
    Filed: June 16, 2017
    Date of Patent: September 25, 2018
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, GLOBALFOUNDRIES INC.
    Inventors: Huiming Bu, Andrew M. Greene, Balasubramanian Pranatharthiharan, Ruilong Xie
  • Publication number: 20180248037
    Abstract: Techniques relate to forming a vertical field effect transistor (FET). One or more fins are formed on a bottom source or drain of a substrate, and one or more fins extend in a vertical direction. Gate material is formed to be positioned on sides of the one or more fins. Gate encapsulation material is formed on sides of the gate material to form a trench, such that top portions of the one or more fins are exposed in the trench. A top source or drain is formed on top of the one or more fins such that the top source or drain is laterally confined by the trench in a lateral direction that is parallel to the one or more fins.
    Type: Application
    Filed: April 27, 2018
    Publication date: August 30, 2018
    Inventors: Brent A. ANDERSON, Huiming BU, Fee Li LIE, Edward J. NOWAK, Junli WANG
  • Publication number: 20180211963
    Abstract: A method is presented for forming an embedded dynamic random access memory (eDRAM) device. The method includes forming a FinFET (fin field effect transistor) device having a plurality of fins over a substrate and forming a via cap adjacent the FinFET device by forming a contact trench extending into a bottom spacer, depositing a conductive liner within the contact trench, filling the contact trench with an organic dielectric layer (ODL), etching portions of the conductive liner and a portion of the ODL, and removing the ODL. The method further includes depositing a high-k material within the contact trench and depositing a conducting material over the high-k material.
    Type: Application
    Filed: August 8, 2017
    Publication date: July 26, 2018
    Inventors: Brent A. Anderson, Huiming Bu, Xuefeng Liu, Junli Wang
  • Publication number: 20180182892
    Abstract: A semiconductor device is provided that includes a first of a source region and a drain region comprised of a first semiconductor material, wherein an etch stop layer of a second semiconductor material present within the first of the source region and the drain region. A channel semiconductor material is present atop the first of the source region and the drain region. A second of the source and the drain region is present atop the channel semiconductor material. The semiconductor device may be a vertically orientated fin field effect transistor or a vertically orientated tunnel field effect transistor.
    Type: Application
    Filed: February 21, 2018
    Publication date: June 28, 2018
    Inventors: Huiming Bu, Liying Jiang, Siyuranga O. Koswatta, Junli Wang
  • Patent number: 10002792
    Abstract: A method for filling gaps between structures includes forming a plurality of high aspect ratio structures adjacent to one another with gaps, forming a first dielectric layer on tops of the structures and conformally depositing a spacer dielectric layer over the structures. The spacer dielectric layer is removed from horizontal surfaces and a protection layer is conformally deposited over the structures. The gaps are filled with a flowable dielectric, which is recessed to a height along sidewalls of the structures by a selective etch process such that the protection layer protects the spacer dielectric layer on sidewalls of the structures. The first dielectric layer and the spacer dielectric layer are exposed above the height using a higher etch resistance than the protection layer to maintain dimensions of the spacer layer dielectric through the etching processes. The gaps are filled by a high density plasma fill.
    Type: Grant
    Filed: June 15, 2017
    Date of Patent: June 19, 2018
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, GLOBALFOUNDRIES INC.
    Inventors: Huiming Bu, Andrew M. Greene, Balasubramanian Pranatharthiharan, Ruilong Xie
  • Patent number: 10002962
    Abstract: Techniques relate to forming a vertical field effect transistor (FET). One or more fins are formed on a bottom source or drain of a substrate, and one or more fins extend in a vertical direction. Gate material is formed to be positioned on sides of the one or more fins. Gate encapsulation material is formed on sides of the gate material to form a trench, such that top portions of the one or more fins are exposed in the trench. A top source or drain is formed on top of the one or more fins such that the top source or drain is laterally confined by the trench in a lateral direction that is parallel to the one or more fins.
    Type: Grant
    Filed: April 27, 2016
    Date of Patent: June 19, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brent A. Anderson, Huiming Bu, Fee Li Lie, Edward J. Nowak, Junli Wang
  • Patent number: 9991267
    Abstract: A method is presented for forming an embedded dynamic random access memory (eDRAM) device. The method includes forming a FinFET (fin field effect transistor) device having a plurality of fins over a substrate and forming a via cap adjacent the FinFET device by forming a contact trench extending into a bottom spacer, depositing a conductive liner within the contact trench, filling the contact trench with an organic dielectric layer (ODL), etching portions of the conductive liner and a portion of the ODL, and removing the ODL. The method further includes depositing a high-k material within the contact trench and depositing a conducting material over the high-k material.
    Type: Grant
    Filed: January 25, 2017
    Date of Patent: June 5, 2018
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Huiming Bu, Xuefeng Liu, Junli Wang
  • Patent number: 9954101
    Abstract: A semiconductor device is provided that includes a first of a source region and a drain region comprised of a first semiconductor material, wherein an etch stop layer of a second semiconductor material present within the first of the source region and the drain region. A channel semiconductor material is present atop the first of the source region and the drain region. A second of the source and the drain region is present atop the channel semiconductor material. The semiconductor device may be a vertically orientated fin field effect transistor or a vertically orientated tunnel field effect transistor.
    Type: Grant
    Filed: June 15, 2016
    Date of Patent: April 24, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Huiming Bu, Liying Jiang, Siyuranga O. Koswatta, Junli Wang
  • Patent number: 9947748
    Abstract: A method for forming fins on a semiconductor device includes etching trenches into a monocrystalline substrate to form first fins and forming a first dielectric layer at bottoms of the trenches. Second fins of a material having a different composition than the substrate are grown on sidewalls of the trenches. A second dielectric layer is formed over the second fins. The first fins are removed by etching. The second fins are processed to form fin field effect transistor devices.
    Type: Grant
    Filed: January 13, 2017
    Date of Patent: April 17, 2018
    Assignee: International Busines Machines Corporation
    Inventors: Huiming Bu, Shogo Mochizuki, Tenko Yamashita
  • Patent number: 9941175
    Abstract: A method for forming fins on a semiconductor device includes etching trenches into a monocrystalline substrate to form first fins and forming a first dielectric layer at bottoms of the trenches. Second fins of a material having a different composition than the substrate are grown on sidewalls of the trenches. A second dielectric layer is formed over the second fins. The first fins are removed by etching. The second fins are processed to form fin field effect transistor devices.
    Type: Grant
    Filed: October 7, 2016
    Date of Patent: April 10, 2018
    Assignee: International Business Machines Corporation
    Inventors: Huiming Bu, Shogo Mochizuki, Tenko Yamashita
  • Patent number: 9935003
    Abstract: A method for filling gaps between structures includes forming a plurality of high aspect ratio structures adjacent to one another with gaps, forming a first dielectric layer on tops of the structures and conformally depositing a spacer dielectric layer over the structures. The spacer dielectric layer is removed from horizontal surfaces and a protection layer is conformally deposited over the structures. The gaps are filled with a flowable dielectric, which is recessed to a height along sidewalls of the structures by a selective etch process such that the protection layer protects the spacer dielectric layer on sidewalls of the structures. The first dielectric layer and the spacer dielectric layer are exposed above the height using a higher etch resistance than the protection layer to maintain dimensions of the spacer layer dielectric through the etching processes. The gaps are filled by a high density plasma fill.
    Type: Grant
    Filed: February 7, 2017
    Date of Patent: April 3, 2018
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, GLOBALFOUNDRIES INC.
    Inventors: Huiming Bu, Andrew M. Greene, Balasubramanian Pranatharthiharan, Ruilong Xie
  • Publication number: 20180090604
    Abstract: Semiconductor devices include one or more fins. Each fin includes a top channel portion formed from a channel material and a bottom substrate portion formed from a same material as an underlying substrate, the top channel portion having a different width than the bottom substrate portion. An isolation dielectric layer formed between and around the bottom substrate portion of the one or more fins. A space exists between at least a top portion of the isolation dielectric layer and the one or more fins. A gate dielectric is formed over the one or more fins and in the space.
    Type: Application
    Filed: December 30, 2016
    Publication date: March 29, 2018
    Inventors: Huiming Bu, Kangguo Cheng, Dechao Guo, Sivananda K. Kanakasabapathy, Peng Xu
  • Publication number: 20180090484
    Abstract: Electrostatic discharge (ESD) devices and methods of manufacture are provided. The method includes forming a plurality of fin structures and a mesa structure from semiconductor material. The method further includes forming an epitaxial material with doped regions on the mesa structure and forming gate material over at least the plurality of fin structures. The method further includes planarizing at least the gate material such that the gate material and the epitaxial material are of a same height. The method further includes forming contacts in electrical connection with respective ones of the doped regions of the epitaxial material.
    Type: Application
    Filed: November 30, 2017
    Publication date: March 29, 2018
    Inventors: Huiming BU, Junjun LI, Theodorus E. STANDAERT, Tenko YAMASHITA
  • Publication number: 20180090599
    Abstract: Semiconductor devices and methods of forming the same include forming a liner over one or more channel fins on a substrate. An etch is performed down into the substrate using the one or more channel fins and the liner as a mask to form a substrate fin underneath each of the one or more channel fins. An area around the one or more channel fins and substrate fins is filled with a flowable dielectric. The flowable dielectric is annealed to solidify the flowable dielectric. The anneal oxidizes at least a portion of sidewalls of each substrate fin, such that each substrate fin is narrower in the oxidized portion than in a portion covered by the liner.
    Type: Application
    Filed: July 18, 2017
    Publication date: March 29, 2018
    Inventors: Huiming Bu, Kangguo Cheng, Dechao Guo, Sivananda K. Kanakasabapathy, Peng Xu
  • Publication number: 20180090606
    Abstract: Semiconductor devices include one or more fins. Each fin includes a top channel portion formed from a channel material and a bottom substrate portion formed from a same material as an underlying substrate, the top channel portion having a different width than the bottom substrate portion. An isolation dielectric layer formed between and around the bottom substrate portion of the one or more fins. A space exists between at least a top portion of the isolation dielectric layer and the one or more fins. A gate dielectric is formed over the one or more fins and in the space.
    Type: Application
    Filed: June 21, 2017
    Publication date: March 29, 2018
    Inventors: Huiming Bu, Kangguo Cheng, Dechao Guo, Sivananda K. Kanakasabapathy, Peng Xu
  • Patent number: 9929057
    Abstract: A method for filling gaps between structures includes forming a plurality of high aspect ratio structures adjacent to one another with gaps, forming a first dielectric layer on tops of the structures and conformally depositing a spacer dielectric layer over the structures. The spacer dielectric layer is removed from horizontal surfaces and a protection layer is conformally deposited over the structures. The gaps are filled with a flowable dielectric, which is recessed to a height along sidewalls of the structures by a selective etch process such that the protection layer protects the spacer dielectric layer on sidewalls of the structures. The first dielectric layer and the spacer dielectric layer are exposed above the height using a higher etch resistance than the protection layer to maintain dimensions of the spacer layer dielectric through the etching processes. The gaps are filled by a high density plasma fill.
    Type: Grant
    Filed: November 3, 2016
    Date of Patent: March 27, 2018
    Assignees: International Business Machines Corporation, GlobalFoundries, Inc.
    Inventors: Huiming Bu, Andrew M. Greene, Balasubramanian Pranatharthiharan, Ruilong Xie
  • Publication number: 20180033868
    Abstract: A vertical fin field-effect-transistor and a method for fabricating the same. The vertical fin field-effect-transistor includes at least a substrate, a first source/drain layer, and a plurality of fins each disposed on and in contact with the first source/drain layer. Silicide regions are disposed within a portion of the first source/drain layer. A gate structure is in contact with the plurality of fins, and a second source/drain layer is disposed on the gate structure. The method includes forming silicide in a portion of a first source/drain layer. A first spacer layer is formed in contact with at least the silicide, the first source/drain layer and the plurality of fins. A gate structure is formed in contact with the plurality of fins and the first spacer layer. A second spacer layer is formed in contact with the gate structure and the plurality of fins.
    Type: Application
    Filed: September 27, 2017
    Publication date: February 1, 2018
    Applicant: International Business Machines Corporation
    Inventors: Brent A. ANDERSON, Huiming BU, Terence B. HOOK, Fee Li LIE, Junli WANG
  • Publication number: 20180019323
    Abstract: A vertical fin field-effect-transistor and a method for fabricating the same. The vertical fin field-effect-transistor includes at least a substrate, a first source/drain layer, and a plurality of fins each disposed on and in contact with the first source/drain layer. Silicide regions are disposed within a portion of the first source/drain layer. A gate structure is in contact with the plurality of fins, and a second source/drain layer is disposed on the gate structure. The method includes forming silicide in a portion of a first source/drain layer. A first spacer layer is formed in contact with at least the silicide, the first source/drain layer and the plurality of fins. A gate structure is formed in contact with the plurality of fins and the first spacer layer. A second spacer layer is formed in contact with the gate structure and the plurality of fins.
    Type: Application
    Filed: September 27, 2017
    Publication date: January 18, 2018
    Inventors: Brent A. ANDERSON, Huiming BU, Terence B. HOOK, Fee Li LIE, Junli WANG
  • Publication number: 20180005826
    Abstract: A method of preventing corner rounding for an alternate channel FINFET formed in trenches and the resulting devices are provided. Embodiments include providing a Si substrate; forming a trench in the Si substrate; forming a Si based layer with a flat upper surface in the trench; and forming a SiGe layer over the Si based layer.
    Type: Application
    Filed: June 30, 2016
    Publication date: January 4, 2018
    Inventors: Ajey P. JACOB, Jody FRONHEISER, Bruce DORIS, Huiming BU