Patents by Inventor Huiming Bu

Huiming Bu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130328135
    Abstract: A gate stack structure for a transistor device includes a gate dielectric layer formed over a substrate; a first silicon gate layer formed over the gate dielectric layer; a dopant-rich monolayer formed over the first silicon gate layer; and a second silicon gate layer formed over the dopant-rich monolayer, wherein the dopant-rich monolayer prevents silicidation of the first silicon gate layer during silicidation of the second silicon gate layer.
    Type: Application
    Filed: June 12, 2012
    Publication date: December 12, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Huiming Bu, Ming Cai, Kevin K. Chan, Dechao Guo, Ravikumar Ramachandran, Liyang Song, Chun-Chen Yeh
  • Publication number: 20130330899
    Abstract: A method of forming gate stack structure for a transistor device includes forming a gate dielectric layer over a substrate; forming a first silicon gate layer over the gate dielectric layer; forming a dopant-rich monolayer over the first silicon gate layer; and forming a second silicon gate layer over the dopant-rich monolayer, wherein the dopant-rich monolayer prevents silicidation of the first silicon gate layer during silicidation of the second silicon gate layer.
    Type: Application
    Filed: June 19, 2012
    Publication date: December 12, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Huiming Bu, Ming Cai, Kevin K. Chan, Dechao Guo, Ravikumar Ramachandran, Liyang Song, Chun-Chen Yeh
  • Publication number: 20130319613
    Abstract: A method for making dual-epi FinFETs is described. The method includes adding a first epitaxial material to an array of fins. The method also includes covering at least a first portion of the array of fins using a first masking material and removing the first epitaxial material from an uncovered portion of the array of fins. Adding a second epitaxial material to the fins in the uncovered portion of the array of fins is included in the method. The method also includes covering a second portion of the array of fins using a second masking material and performing a directional etch using the first masking material and the second masking material. Apparatus and computer program products are also described.
    Type: Application
    Filed: July 10, 2012
    Publication date: December 5, 2013
    Inventors: Veeraraghavan S. Basker, Huiming Bu, Kangguo Cheng, Balasubramanian S. Haran, Nicolas Loubet, Shom Ponoth, Stefan Schmitz, Theodorus E. Standaert, Tenko Yamashita
  • Patent number: 8592290
    Abstract: A method for making dual-epi FinFETs is described. The method includes adding a first epitaxial material to an array of fins. The method also includes covering at least a first portion of the array of fins using a first masking material and removing the first epitaxial material from an uncovered portion of the array of fins. Adding a second epitaxial material to the fins in the uncovered portion of the array of fins is included in the method. The method also includes covering a second portion of the array of fins using a second masking material and performing a directional etch using the first masking material and the second masking material. Apparatus and computer program products are also described.
    Type: Grant
    Filed: July 10, 2012
    Date of Patent: November 26, 2013
    Assignee: International Business Machines Corporation
    Inventors: Veeraraghavan S. Basker, Huiming Bu, Kangguo Cheng, Balasubramanian S. Haran, Nicolas Loubet, Shom Ponoth, Stefan Schmitz, Theodorus E. Standaert, Tenko Yamashita
  • Patent number: 8592264
    Abstract: A method includes forming on a surface of a semiconductor a dummy gate structure comprised of a plug; forming a first spacer surrounding the plug, the first spacer being a sacrificial spacer; and performing an angled ion implant so as to implant a dopant species into the surface of the semiconductor adjacent to an outer sidewall of the first spacer to form a source extension region and a drain extension region, where the implanted dopant species extends under the outer sidewall of the first spacer by an amount that is a function of the angle of the ion implant. The method further includes performing a laser anneal to activate the source extension and the drain extension implant. The method further includes forming a second spacer surrounding the first spacer, removing the first spacer and the plug to form an opening, and depositing a gate stack in the opening.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: November 26, 2013
    Assignee: International Business Machines Corporation
    Inventors: Takashi Ando, Huiming Bu, Ramachandra Divakaruni, Bruce B. Doris, Chung-Hsun Lin, Huiling Shang, Tenko Yamashita
  • Patent number: 8575709
    Abstract: Methods for fabricating gate electrode/high-k dielectric gate structures having an improved resistance to the growth of silicon dioxide (oxide) at the dielectric/silicon-based substrate interface. In an embodiment, a method of forming a transistor gate structure comprises: incorporating nitrogen into a silicon-based substrate proximate a surface of the substrate; depositing a high-k gate dielectric across the silicon-based substrate; and depositing a gate electrode across the high-k dielectric to form the gate structure. In one embodiment, the gate electrode comprises titanium nitride rich in titanium for inhibiting diffusion of oxygen.
    Type: Grant
    Filed: July 24, 2012
    Date of Patent: November 5, 2013
    Assignee: International Business Machines Corporation
    Inventors: Huiming Bu, Michael P. Chudzik, Wei He, William K. Henson, Siddarth A. Krishnan, Unoh Kwon, Naim Moumen, Wesley C. Natzle
  • Patent number: 8569152
    Abstract: A method for making dual-epi FinFETs is described. The method includes adding a first epitaxial material to an array of fins. The method also includes covering at least a first portion of the array of fins using a first masking material and removing the first epitaxial material from an uncovered portion of the array of fins. Adding a second epitaxial material to the fins in the uncovered portion of the array of fins is included in the method. The method also includes covering a second portion of the array of fins using a second masking material and performing a directional etch using the first masking material and the second masking material. Apparatus and computer program products are also described.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: October 29, 2013
    Assignee: International Business Machines Corporation
    Inventors: Veeraraghavan S. Basker, Huiming Bu, Kangguo Cheng, Balasubramanian S. Haran, Nicolas Loubet, Shom Ponoth, Stefan Schmitz, Theodorus E Standaert, Tenko Yamashita
  • Patent number: 8507992
    Abstract: A method of forming a semiconductor device is provided that includes forming a Ge-containing layer atop a p-type device regions of the substrate. Thereafter, a first dielectric layer is formed in a second portion of a substrate, and a second dielectric layer is formed overlying the first dielectric layer in the second portion of the substrate and overlying a first portion of the substrate. Gate structures may then formed atop the p-type device regions and n-type device regions of the substrate, in which the gate structures to the n-type device regions include a rare earth metal.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: August 13, 2013
    Assignee: International Business Machines Corporation
    Inventors: Renee T. Mo, Huiming Bu, Michael P. Chudzik, William K. Henson, Mukesh V. Khare, Vijay Narayanan
  • Publication number: 20130173214
    Abstract: A method and test circuit for electrically measuring the critical dimension of a fin of a FinFET is disclosed. The method comprises measuring the resistance of a first gate test structure, measuring the resistance of a second gate test structure, computing a linear equation relating sheet resistance to gate width, computing a Y intercept value of the linear equation to derive an external resistance value, computing a sheet resistance value for the first gate test structure based on the external resistance value, measuring the resistance of a doped fin test structure, and computing a critical dimension of a fin based on the sheet resistance value.
    Type: Application
    Filed: January 4, 2012
    Publication date: July 4, 2013
    Applicant: International Business Machines Corporation
    Inventors: Tenko Yamashita, Huiming Bu, Effendi Leobandung, Theodorus Eduardus Standaert
  • Publication number: 20130161744
    Abstract: A finFET device is provided. The finFET device includes a BOX layer, fin structures located over the BOX layer, a gate stack located over the fin structures, gate spacers located on vertical sidewalls of the gate stack, an epi layer covering the fin structures, source and drain regions located in the semiconductor layers of the fin structures, and silicide regions abutting the source and drain regions. The fin structures each comprise a semiconductor layer and extend in a first direction, and the gate stack extends in a second direction that is perpendicular. The gate stack comprises a high-K dielectric layer and a metal gate, and the epi layer merges the fin structures together. The silicide regions each include a vertical portion located on the vertical sidewall of the source or drain region.
    Type: Application
    Filed: December 27, 2011
    Publication date: June 27, 2013
    Applicant: International Business Machines Corporation
    Inventors: Veeraraghavan S. BASKER, Andres Bryant, Huiming Bu, Wilfried Haensch, Effendi Leobandung, Chung-Hsun Lin, Theodorus E. Standaert, Tenko Yamashita, Chun-chen Yeh
  • Publication number: 20130164890
    Abstract: A method is provided for fabricating a finFET device. Fin structures are formed over a BOX layer. The fin structures include a semiconductor layer and extend in a first direction. A gate stack is formed on the BOX layer over the fin structures and extending in a second direction. The gate stack includes a high-K dielectric layer and a metal gate. Gate spacers are formed on sidewalls of the gate stack, and an epi layer is deposited to merge the fin structures. Ions are implanted to form source and drain regions, and dummy spacers are formed on sidewalls of the gate spacers. The dummy spacers are used as a mask to recess or completely remove an exposed portion of the epi layer. Silicidation forms silicide regions that abut the source and drain regions and each include a vertical portion located on the vertical sidewall of the source or drain region.
    Type: Application
    Filed: September 14, 2012
    Publication date: June 27, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Veeraraghavan S. BASKER, Andres BRYANT, Huiming BU, Wilfried HAENSCH, Effendi LEOBANDUNG, Chung-Hsun LIN, Theodorus E. STANDAERT, Tenko YAMASHITA, Chun-chen YEH
  • Publication number: 20130161763
    Abstract: A method includes forming on a surface of a semiconductor a dummy gate structure comprised of a plug; forming a first spacer surrounding the plug, the first spacer being a sacrificial spacer; and performing an angled ion implant so as to implant a dopant species into the surface of the semiconductor adjacent to an outer sidewall of the first spacer to form a source extension region and a drain extension region, where the implanted dopant species extends under the outer sidewall of the first spacer by an amount that is a function of the angle of the ion implant. The method further includes performing a laser anneal to activate the source extension and the drain extension implant. The method further includes forming a second spacer surrounding the first spacer, removing the first spacer and the plug to form an opening, and depositing a gate stack in the opening.
    Type: Application
    Filed: December 21, 2011
    Publication date: June 27, 2013
    Applicant: International Business Machines Corporation
    Inventors: Takashi Ando, Huiming Bu, Ramachandra Divakaruni, Bruce B. Doris, Chung-Hsun Lin, Huiling Shang, Tenko Yamashita
  • Publication number: 20130154005
    Abstract: FinFETS and methods for making FinFETs with a recessed stress liner. A method includes providing an SW substrate with fins, forming a gate over the fins, forming an off-set spacer on the gate, epitaxially growing a film to merge the fins, depositing a dummy spacer around the gate, and recessing the merged epi film. Silicide is then formed on the recessed merged epi film followed by deposition of a stress liner film over the FinFET. By using a recessed merged epi process, a MOSFET with a vertical silicide (i.e. perpendicular to the substrate) can be formed. The perpendicular silicide improves spreading resistance.
    Type: Application
    Filed: September 7, 2012
    Publication date: June 20, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Veeraraghavan S. Basker, Huiming Bu, Effendi Leobandung, Theodorus E. Standaert, Tenko Yamashita, Chun-Chen Yeh
  • Patent number: 8455313
    Abstract: A method is provided for fabricating a finFET device. Fin structures are formed over a BOX layer. The fin structures include a semiconductor layer and extend in a first direction. A gate stack is formed on the BOX layer over the fin structures and extending in a second direction. The gate stack includes a high-K dielectric layer and a metal gate. Gate spacers are formed on sidewalls of the gate stack, and an epi layer is deposited to merge the fin structures. Ions are implanted to form source and drain regions, and dummy spacers are formed on sidewalls of the gate spacers. The dummy spacers are used as a mask to recess or completely remove an exposed portion of the epi layer. Silicidation forms silicide regions that abut the source and drain regions and each include a vertical portion located on the vertical sidewall of the source or drain region.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: June 4, 2013
    Assignee: International Business Machines Corporation
    Inventors: Veeraraghavan S. Basker, Andres Bryant, Huiming Bu, Wilfried Haensch, Effendi Leobandung, Chung-Hsun Lin, Theodorus E. Standaert, Tenko Yamashita, Chun-chen Yeh
  • Patent number: 8445334
    Abstract: FinFETS and methods for making FinFETs with a recessed stress liner. A method includes providing an SOI substrate with fins, forming a gate over the fins, forming an off-set spacer on the gate, epitaxially growing a film to merge the fins, depositing a dummy spacer around the gate, and recessing the merged epi film. Silicide is then formed on the recessed merged epi film followed by deposition of a stress liner film over the FinFET. By using a recessed merged epi process, a MOSFET with a vertical silicide (i.e. perpendicular to the substrate) can be formed. The perpendicular silicide improves spreading resistance.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: May 21, 2013
    Assignee: International Business Machines Corporation
    Inventors: Veeraraghavan S. Basker, Huiming Bu, Effendi Leobandung, Theodorus E. Standaert, Tenko Yamashita, Chun-Chen Yeh
  • Patent number: 8441039
    Abstract: Techniques for incorporating nanotechnology into electronic fuse (e-fuse) designs are provided. In one aspect, an e-fuse structure is provided. The e-fuse structure includes a first electrode; a dielectric layer on the first electrode having a plurality of nanochannels therein; an array of metal silicide nanopillars that fill the nanochannels in the dielectric layer, each nanopillar in the array serving as an e-fuse element; and a second electrode in contact with the array of metal silicide nanopillars opposite the first electrode. Methods for fabricating the e-fuse structure are also provided as are semiconductor devices incorporating the e-fuse structure.
    Type: Grant
    Filed: October 16, 2012
    Date of Patent: May 14, 2013
    Assignee: International Business Machines Corporation
    Inventors: Satya N. Chakravarti, Dechao Guo, Huiming Bu, Keith Kwong Hon Wong
  • Patent number: 8344428
    Abstract: Techniques for incorporating nanotechnology into electronic fuse (e-fuse) designs are provided. In one aspect, an e-fuse structure is provided. The e-fuse structure includes a first electrode; a dielectric layer on the first electrode having a plurality of nanochannels therein; an array of metal silicide nanopillars that fill the nanochannels in the dielectric layer, each nanopillar in the array serving as an e-fuse element; and a second electrode in contact with the array of metal silicide nanopillars opposite the first electrode. Methods for fabricating the e-fuse structure are also provided as are semiconductor devices incorporating the e-fuse structure.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: January 1, 2013
    Assignee: International Business Machines Corporation
    Inventors: Satya N. Chakravarti, Dechao Guo, Huiming Bu, Keith Kwong Hon Wong
  • Patent number: 8318565
    Abstract: Methods for fabricating gate electrode/high-k dielectric gate structures having an improved resistance to the growth of silicon dioxide (oxide) at the dielectric/silicon-based substrate interface. In an embodiment, a method of forming a transistor gate structure comprises: incorporating nitrogen into a silicon-based substrate proximate a surface of the substrate; depositing a high-k gate dielectric across the silicon-based substrate; and depositing a gate electrode across the high-k dielectric to form the gate structure. In one embodiment, the gate electrode comprises titanium nitride rich in titanium for inhibiting diffusion of oxygen.
    Type: Grant
    Filed: March 11, 2010
    Date of Patent: November 27, 2012
    Assignee: International Business Machines Corporation
    Inventors: Huiming Bu, Michael P. Chudzik, Wei He, William K. Henson, Siddarth A. Krishnan, Unoh Kwon, Naim Moumen, Wesley C. Natzle
  • Publication number: 20120286374
    Abstract: Methods for fabricating gate electrode/high-k dielectric gate structures having an improved resistance to the growth of silicon dioxide (oxide) at the dielectric/silicon-based substrate interface. In an embodiment, a method of forming a transistor gate structure comprises: incorporating nitrogen into a silicon-based substrate proximate a surface of the substrate; depositing a high-k gate dielectric across the silicon-based substrate; and depositing a gate electrode across the high-k dielectric to form the gate structure. In one embodiment, the gate electrode comprises titanium nitride rich in titanium for inhibiting diffusion of oxygen.
    Type: Application
    Filed: July 24, 2012
    Publication date: November 15, 2012
    Applicant: International Business Machines Corporation
    Inventors: Huiming Bu, Michael P. Chudzik, Wei He, William K. Henson, Siddarth A. Krishnan, Unoh Kwon, Naim Moumen, Wesley C. Natzle
  • Publication number: 20120261762
    Abstract: A semiconductor device and method for fabricating a semiconductor device include providing a strained semiconductor layer having a first strained axis, forming an active region within a surface of the strained semiconductor layer where the active region has a longitudinal axis along the strained axis and forming gate structures over the active region. Raised source/drain regions are formed on the active regions above and over the surface of the strained semiconductor layer and adjacent to the gate structures to form transistor devices.
    Type: Application
    Filed: June 22, 2012
    Publication date: October 18, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: STEPHEN W. BEDELL, HUIMING BU, KANGGUO CHENG, BRUCE B. DORIS, JOHNATHAN E. FALTERMEIER, ALI KHAKIFIROOZ, DEVENDRA K. SADANA, CHUN-CHEN YEH