Patents by Inventor Huiming Bu

Huiming Bu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170373170
    Abstract: A vertical fin field-effect-transistor and a method for fabricating the same. The vertical fin field-effect-transistor includes at least a substrate, a first source/drain layer, and a plurality of fins each disposed on and in contact with the first source/drain layer. Silicide regions are disposed within a portion of the first source/drain layer. A gate structure is in contact with the plurality of fins, and a second source/drain layer is disposed on the gate structure. The method includes forming silicide in a portion of a first source/drain layer. A first spacer layer is formed in contact with at least the silicide, the first source/drain layer and the plurality of fins. A gate structure is formed in contact with the plurality of fins and the first spacer layer. A second spacer layer is formed in contact with the gate structure and the plurality of fins.
    Type: Application
    Filed: June 22, 2016
    Publication date: December 28, 2017
    Inventors: Brent A. ANDERSON, Huiming BU, Terence B. HOOK, Fee Li LIE, Junli WANG
  • Patent number: 9853127
    Abstract: A vertical fin field-effect-transistor and a method for fabricating the same. The vertical fin field-effect-transistor includes at least a substrate, a first source/drain layer, and a plurality of fins each disposed on and in contact with the first source/drain layer. Silicide regions are disposed within a portion of the first source/drain layer. A gate structure is in contact with the plurality of fins, and a second source/drain layer is disposed on the gate structure. The method includes forming silicide in a portion of a first source/drain layer. A first spacer layer is formed in contact with at least the silicide, the first source/drain layer and the plurality of fins. A gate structure is formed in contact with the plurality of fins and the first spacer layer. A second spacer layer is formed in contact with the gate structure and the plurality of fins.
    Type: Grant
    Filed: June 22, 2016
    Date of Patent: December 26, 2017
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Huiming Bu, Terence B. Hook, Fee Li Lie, Junli Wang
  • Publication number: 20170365714
    Abstract: A semiconductor device is provided that includes a first of a source region and a drain region comprised of a first semiconductor material, wherein an etch stop layer of a second semiconductor material present within the first of the source region and the drain region. A channel semiconductor material is present atop the first of the source region and the drain region. A second of the source and the drain region is present atop the channel semiconductor material. The semiconductor device may be a vertically orientated fin field effect transistor or a vertically orientated tunnel field effect transistor.
    Type: Application
    Filed: July 18, 2017
    Publication date: December 21, 2017
    Inventors: Huiming Bu, Liying Jiang, Siyuranga O. Koswatta, Junli Wang
  • Publication number: 20170365712
    Abstract: A semiconductor device is provided that includes a first of a source region and a drain region comprised of a first semiconductor material, wherein an etch stop layer of a second semiconductor material present within the first of the source region and the drain region. A channel semiconductor material is present atop the first of the source region and the drain region. A second of the source and the drain region is present atop the channel semiconductor material. The semiconductor device may be a vertically orientated fin field effect transistor or a vertically orientated tunnel field effect transistor.
    Type: Application
    Filed: June 15, 2016
    Publication date: December 21, 2017
    Inventors: Huiming Bu, Liying Jiang, Siyuranga O. Koswatta, Junli Wang
  • Publication number: 20170323794
    Abstract: A method for manufacturing a semiconductor device includes forming a first active region on a semiconductor substrate, forming a semiconductor layer on the first active region, patterning the semiconductor layer into a plurality of fins extending from the first active region vertically with respect to the semiconductor substrate, wherein the first active region is located at bottom ends of the plurality of fins, forming a silicide layer on exposed portions of the first active region, forming an electrically conductive contact on the silicide region, forming a second active region on top ends of each of the plurality of fins, and forming a gate structure between the plurality of fins, wherein the gate structure is positioned over the first active region and under the second active region.
    Type: Application
    Filed: July 20, 2017
    Publication date: November 9, 2017
    Inventors: Brent A. Anderson, Huiming Bu, Terence B. Hook, Fee Li Lie, Junli Wang
  • Publication number: 20170317210
    Abstract: Techniques relate to forming a vertical field effect transistor (FET). One or more fins are formed on a bottom source or drain of a substrate, and one or more fins extend in a vertical direction. Gate material is formed to be positioned on sides of the one or more fins. Gate encapsulation material is formed on sides of the gate material to form a trench, such that top portions of the one or more fins are exposed in the trench. A top source or drain is formed on top of the one or more fins such that the top source or drain is laterally confined by the trench in a lateral direction that is parallel to the one or more fins.
    Type: Application
    Filed: April 27, 2016
    Publication date: November 2, 2017
    Inventors: Brent A. Anderson, Huiming Bu, Fee Li Lie, Edward J. Nowak, Junli Wang
  • Publication number: 20170316945
    Abstract: A method for manufacturing a semiconductor device includes forming a first active region on a semiconductor substrate, forming a semiconductor layer on the first active region, patterning the semiconductor layer into a plurality of fins extending from the first active region vertically with respect to the semiconductor substrate, wherein the first active region is located at bottom ends of the plurality of fins, forming a silicide layer on exposed portions of the first active region, forming an electrically conductive contact on the silicide region, forming a second active region on top ends of each of the plurality of fins, and forming a gate structure between the plurality of fins, wherein the gate structure is positioned over the first active region and under the second active region.
    Type: Application
    Filed: July 20, 2017
    Publication date: November 2, 2017
    Inventors: BRENT A. ANDERSON, HUIMING BU, TERENCE B. HOOK, FEE LI LIE, JUNLI WANG
  • Patent number: 9805935
    Abstract: A method for manufacturing a semiconductor device includes forming a first active region on a semiconductor substrate, forming a semiconductor layer on the first active region, patterning the semiconductor layer into a plurality of fins extending from the first active region vertically with respect to the semiconductor substrate, wherein the first active region is located at bottom ends of the plurality of fins, forming a silicide layer on exposed portions of the first active region, forming an electrically conductive contact on the silicide region, forming a second active region on top ends of each of the plurality of fins, and forming a gate structure between the plurality of fins, wherein the gate structure is positioned over the first active region and under the second active region.
    Type: Grant
    Filed: December 31, 2015
    Date of Patent: October 31, 2017
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Huiming Bu, Terence B. Hook, Fee Li Lie, Junli Wang
  • Publication number: 20170287776
    Abstract: A method for filling gaps between structures includes forming a plurality of high aspect ratio structures adjacent to one another with gaps, forming a first dielectric layer on tops of the structures and conformally depositing a spacer dielectric layer over the structures. The spacer dielectric layer is removed from horizontal surfaces and a protection layer is conformally deposited over the structures. The gaps are filled with a flowable dielectric, which is recessed to a height along sidewalls of the structures by a selective etch process such that the protection layer protects the spacer dielectric layer on sidewalls of the structures. The first dielectric layer and the spacer dielectric layer are exposed above the height using a higher etch resistance than the protection layer to maintain dimensions of the spacer layer dielectric through the etching processes. The gaps are filled by a high density plasma fill.
    Type: Application
    Filed: June 16, 2017
    Publication date: October 5, 2017
    Inventors: Huiming Bu, Andrew M. Greene, Balasubramanian Pranatharthiharan, Ruilong Xie
  • Publication number: 20170287785
    Abstract: A method for filling gaps between structures includes forming a plurality of high aspect ratio structures adjacent to one another with gaps, forming a first dielectric layer on tops of the structures and conformally depositing a spacer dielectric layer over the structures. The spacer dielectric layer is removed from horizontal surfaces and a protection layer is conformally deposited over the structures. The gaps are filled with a flowable dielectric, which is recessed to a height along sidewalls of the structures by a selective etch process such that the protection layer protects the spacer dielectric layer on sidewalls of the structures. The first dielectric layer and the spacer dielectric layer are exposed above the height using a higher etch resistance than the protection layer to maintain dimensions of the spacer layer dielectric through the etching processes. The gaps are filled by a high density plasma fill.
    Type: Application
    Filed: June 15, 2017
    Publication date: October 5, 2017
    Inventors: Huiming Bu, Andrew M. Greene, Balasubramanian Pranatharthiharan, Ruilong Xie
  • Patent number: 9773893
    Abstract: Semiconductor devices and methods of forming the same include forming a liner over one or more channel fins on a substrate. An etch is performed down into the substrate using the one or more channel fins and the liner as a mask to form a substrate fin underneath each of the one or more channel fins. An area around the one or more channel fins and substrate fins is filled with a flowable dielectric. The flowable dielectric is annealed to solidify the flowable dielectric. The anneal oxidizes at least a portion of sidewalls of each substrate fin, such that each substrate fin is narrower in the oxidized portion than in a portion covered by the liner.
    Type: Grant
    Filed: September 26, 2016
    Date of Patent: September 26, 2017
    Assignee: International Business Machines Corporation
    Inventors: Huiming Bu, Kangguo Cheng, Dechao Guo, Sivananda K. Kanakasabapathy, Peng Xu
  • Publication number: 20170263601
    Abstract: Electrostatic discharge (ESD) devices and methods of manufacture are provided. The method includes forming a plurality of fin structures and a mesa structure from semiconductor material. The method further includes forming an epitaxial material with doped regions on the mesa structure and forming gate material over at least the plurality of fin structures. The method further includes planarizing at least the gate material such that the gate material and the epitaxial material are of a same height. The method further includes forming contacts in electrical connection with respective ones of the doped regions of the epitaxial material.
    Type: Application
    Filed: May 26, 2017
    Publication date: September 14, 2017
    Inventors: Huiming BU, Junjun LI, Theodorus E. STANDAERT, Tenko YAMASHITA
  • Publication number: 20170229556
    Abstract: According to an embodiment of the present invention, a method for forming a semiconductor device includes pattering a first fin in a semiconductor substrate, and forming a liner layer over the first fin. The method further includes removing a first portion of the liner layer, and removing a portion of the exposed semiconductor substrate to form a first cavity. The method also includes performing an isotropic etching process to remove portions of the semiconductor substrate in the first cavity and form a first undercut region below the liner layer, growing a first epitaxial semiconductor material in the first undercut region and the first cavity, and performing a first annealing process to drive dopants from the first epitaxial semiconductor material into the first fin to form a first source/drain layer under the first fin and in portions of the semiconductor substrate.
    Type: Application
    Filed: October 4, 2016
    Publication date: August 10, 2017
    Inventors: Brent A. Anderson, Huiming Bu, Fee Li Lie, Shogo Mochizuki, Junli Wang
  • Publication number: 20170229558
    Abstract: According to an embodiment of the present invention, a method for forming a semiconductor device includes pattering a first fin in a semiconductor substrate, and forming a liner layer over the first fin. The method further includes removing a first portion of the liner layer, and removing a portion of the exposed semiconductor substrate to form a first cavity. The method also includes performing an isotropic etching process to remove portions of the semiconductor substrate in the first cavity and form a first undercut region below the liner layer, growing a first epitaxial semiconductor material in the first undercut region and the first cavity, and performing a first annealing process to drive dopants from the first epitaxial semiconductor material into the first fin to form a first source/drain layer under the first fin and in portions of the semiconductor substrate.
    Type: Application
    Filed: February 8, 2016
    Publication date: August 10, 2017
    Inventors: Brent A. Anderson, Huiming Bu, Fee Li Lie, Shogo Mochizuki, Junli Wang
  • Patent number: 9721834
    Abstract: A method for filling gaps between structures includes forming a plurality of high aspect ratio structures adjacent to one another with gaps, forming a first dielectric layer on tops of the structures and conformally depositing a spacer dielectric layer over the structures. The spacer dielectric layer is removed from horizontal surfaces and a protection layer is conformally deposited over the structures. The gaps are filled with a flowable dielectric, which is recessed to a height along sidewalls of the structures by a selective etch process such that the protection layer protects the spacer dielectric layer on sidewalls of the structures. The first dielectric layer and the spacer dielectric layer are exposed above the height using a higher etch resistance than the protection layer to maintain dimensions of the spacer layer dielectric through the etching processes. The gaps are filled by a high density plasma fill.
    Type: Grant
    Filed: April 6, 2016
    Date of Patent: August 1, 2017
    Assignees: International Business Machines Corporation, Globalfoundries Inc.
    Inventors: Huiming Bu, Andrew M. Greene, Balasubramanian Pranatharthiharan, Ruilong Xie
  • Patent number: 9721848
    Abstract: A semiconductor device includes a first fin and a second fin arranged on a substrate, a gate stack arranged over a channel region of the first fin, and spacers arranged along sidewalls of the gate stack. A cavity is arranged adjacent to a distal end of the gate stack. The cavity is defined by the substrate, a distal end of the second fin, and the spacers. A dielectric fill material is arranged in the cavity such that the dielectric fill material contacts the substrate, the distal end of the second fin, and the spacers.
    Type: Grant
    Filed: October 28, 2016
    Date of Patent: August 1, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Huiming Bu, Kangguo Cheng, Andrew M. Greene, Dechao Guo, Sivananda K. Kanakasabapathy, Gauri Karve, Balasubramanian S. Pranatharthiharan, Stuart A. Sieg, John R. Sporre, Gen Tsutsui, Rajasekhar Venigalla, Huimei Zhou
  • Patent number: 9704848
    Abstract: Electrostatic discharge (ESD) devices and methods of manufacture are provided. The method includes forming a plurality of fin structures and a mesa structure from semiconductor material. The method further includes forming an epitaxial material with doped regions on the mesa structure and forming gate material over at least the plurality of fin structures. The method further includes planarizing at least the gate material such that the gate material and the epitaxial material are of a same height. The method further includes forming contacts in electrical connection with respective ones of the doped regions of the epitaxial material.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: July 11, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Huiming Bu, Junjun Li, Theodorus E. Standaert, Tenko Yamashita
  • Publication number: 20170194155
    Abstract: A method for manufacturing a semiconductor device includes forming a first active region on a semiconductor substrate, forming a semiconductor layer on the first active region, patterning the semiconductor layer into a plurality of fins extending from the first active region vertically with respect to the semiconductor substrate, wherein the first active region is located at bottom ends of the plurality of fins, forming a silicide layer on exposed portions of the first active region, forming an electrically conductive contact on the silicide region, forming a second active region on top ends of each of the plurality of fins, and forming a gate structure between the plurality of fins, wherein the gate structure is positioned over the first active region and under the second active region.
    Type: Application
    Filed: December 31, 2015
    Publication date: July 6, 2017
    Inventors: Brent A. Anderson, Huiming Bu, Terence B. Hook, Fee Li Lie, Junli Wang
  • Patent number: 9698061
    Abstract: A method of forming a polysilicon resistor in replacement metal gate (RMG) processing of finFET devices includes forming a plurality of semiconductor fins over a buried oxide layer of a silicon-on-insulator substrate; forming a trench in the buried oxide layer; forming a polysilicon layer over the semiconductor fins and in the trench, the polysilicon layer having a depression corresponding to a location of the trench; forming an insulating layer over the polysilicon layer, and performing a planarizing operation to remove the insulating layer except for a portion of the insulating layer formed in the depression, thereby defining a protective island; patterning the polysilicon layer to define both a dummy gate structure over the fins and the polysilicon resistor; and etching the polysilicon layer to remove the dummy gate structure, wherein the protective island prevents the polysilicon resistor from being removed.
    Type: Grant
    Filed: May 18, 2016
    Date of Patent: July 4, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Veeraraghavan S. Basker, Huiming Bu, Tenko Yamashita
  • Publication number: 20170148668
    Abstract: A method for filling gaps between structures includes forming a plurality of high aspect ratio structures adjacent to one another with gaps, forming a first dielectric layer on tops of the structures and conformally depositing a spacer dielectric layer over the structures. The spacer dielectric layer is removed from horizontal surfaces and a protection layer is conformally deposited over the structures. The gaps are filled with a flowable dielectric, which is recessed to a height along sidewalls of the structures by a selective etch process such that the protection layer protects the spacer dielectric layer on sidewalls of the structures. The first dielectric layer and the spacer dielectric layer are exposed above the height using a higher etch resistance than the protection layer to maintain dimensions of the spacer layer dielectric through the etching processes. The gaps are filled by a high density plasma fill.
    Type: Application
    Filed: February 7, 2017
    Publication date: May 25, 2017
    Inventors: Huiming Bu, Andrew M. Greene, Balasubramanian Pranatharthiharan, Ruilong Xie