Patents by Inventor Hung Huang

Hung Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11848280
    Abstract: An assembly structure and a method for manufacturing the same are provided. The method for manufacturing the assembly structure includes providing a substrate defining an active region and a side rail surrounding the active region; and forming a frame structure on the side rail.
    Type: Grant
    Filed: November 25, 2020
    Date of Patent: December 19, 2023
    Assignee: ADVANCED SEMlCONDUCTOR ENGINEERING, INC.
    Inventors: Wen Hung Huang, Yu-Ju Liao
  • Publication number: 20230395435
    Abstract: A method includes providing a structure having a first stack of nanostructures spaced vertically one from another and a second stack of nanostructures spaced vertically one from another, forming a dielectric layer wrapping around each of the nanostructures in the first and second stacks, depositing an n-type work function layer on the dielectric layer and a p-type work function layer on the n-type work function layer and over the first and second stacks. The n-type work function layer wraps around each of the nanostructures in the first stack. The p-type work function layer wraps around each of the nanostructures in the second stack. The method also includes forming an electrode layer on the p-type work function layer and over the first and second stacks.
    Type: Application
    Filed: June 5, 2022
    Publication date: December 7, 2023
    Inventors: Chih-Wei Lee, Jo-Chun Hung, Wen-Hung Huang, Jian-Hao Chen, Kuo-Feng Yu
  • Publication number: 20230395598
    Abstract: A sacrificial layer is formed over a first channel structure of an N-type transistor (NFET) and over a second channel structure of a P-type transistor (PFET). A PFET patterning process is performed at least in part by etching away the sacrificial layer in the PFET while protecting the NFET from being etched. After the PFET patterning process has been performed, a P-type work function (WF) metal layer is deposited in both the NFET and the PFET. An NFET patterning process is performed at least in part by etching away the P-type WF metal layer and the sacrificial layer in the NFET while protecting the PFET from being etched. After the NFET patterning process has been performed, an N-type WF metal layer is deposited in both the NFET and the PFET.
    Type: Application
    Filed: June 4, 2022
    Publication date: December 7, 2023
    Inventors: Jo-Chun Hung, Chih-Wei Lee, Wen-Hung Huang, Hui-Chi Chen, Jian-Hao Chen, Kuo-Feng Yu, Hsin-Han Tsai, Yin-Chuan Chuang, Yu-Ling Cheng, Yu-Xuan Wang, Tefu Yeh
  • Patent number: 11835441
    Abstract: A sample classification device including a carrier, a first detection module, and a sample pipeline is provided. The first detection module includes a first light-emitting device, a second light-emitting device, and a first optical sensing device. The first light emitting device is located on the carrier and used to emit light of a first wavelength. The second light emitting device is located on the carrier and used to emit light of a second wavelength. The first wavelength is different from the second wavelength. The first optical sensing device is located on the carrier and between the first light emitting device and the second light emitting device. The sample pipeline is located above the carrier and passes above the first optical sensing device.
    Type: Grant
    Filed: May 5, 2021
    Date of Patent: December 5, 2023
    Assignee: Industrial Technology Research Institute
    Inventors: Chih-Hung Huang, Yuan-Fa Lee, Miao-Chang Wu, Sheng-Li Chang, Chih-Ching Liao
  • Publication number: 20230386990
    Abstract: A wiring structure and a method for manufacturing the same are provided. The wiring structure includes a lower conductive structure, an upper conductive structure and a conductive via. The lower conductive structure includes a first dielectric layer and a first circuit layer in contact with the first dielectric layer. The upper conductive structure is attached to the lower conductive structure. The upper conductive structure includes a plurality of second dielectric layers, a plurality of second circuit layers in contact with the second dielectric layers, and defines an accommodating hole. An insulation material is disposed in the accommodating hole. The conductive via extends through the insulation material, and electrically connects the lower conductive structure.
    Type: Application
    Filed: August 15, 2023
    Publication date: November 30, 2023
    Applicant: Advanced Semiconductor Engineering, Inc.
    Inventor: Wen Hung HUANG
  • Publication number: 20230387092
    Abstract: A semiconductor device package includes a first conductive structure, a stress buffering layer and a second conductive structure. The first conductive structure includes a substrate, at least one first electronic component embedded in the substrate, and a first circuit layer disposed on the substrate and electrically connected to the first electronic component. The first circuit layer includes a conductive wiring pattern. The stress buffering layer is disposed on the substrate. The conductive wiring pattern of the first circuit layer extends through the stress buffering layer. The second conductive structure is disposed on the stress buffering layer and the first circuit layer.
    Type: Application
    Filed: August 8, 2023
    Publication date: November 30, 2023
    Applicant: Advanced Semiconductor Engineering, Inc.
    Inventors: Chien-Mei HUANG, Shih-Yu WANG, I-Ting LIN, Wen Hung HUANG, Yuh-Shan SU, Chih-Cheng LEE, Hsing Kuo TIEN
  • Publication number: 20230387034
    Abstract: A conductive structure includes a core portion, a plurality of electronic devices and a filling material. The core portion defines a cavity. The electronic devices are disposed in the cavity of the core portion. The filling material is disposed between the electronic devices and a sidewall of the cavity of the core portion.
    Type: Application
    Filed: August 8, 2023
    Publication date: November 30, 2023
    Applicant: Advanced Semiconductor Engineering, Inc.
    Inventor: Wen Hung HUANG
  • Publication number: 20230378107
    Abstract: A semiconductor device package includes a semiconductor device and an electrically conductive pad disposed in contact with a surface of the semiconductor device. The semiconductor device package further includes a redistribution layer (RDL) formed over the electrically conductive pad and the surface of the semiconductor device, and an electrical connector disposed over and electrically coupled to the RDL. The RDL includes a first passivation layer disposed over a surface of the semiconductor device and the electrically conductive pad, and further includes an RDL trace. The RDL trace includes a first portion in contact with the electrically conductive pad, a second portion in contact with one of the electrical connector or an underlying metallization layer in contact with the electrical connector, and a third portion having a non-planar and undulating configuration relative to the surface of the semiconductor device.
    Type: Application
    Filed: May 19, 2022
    Publication date: November 23, 2023
    Inventors: Kuan-Hsiang Mao, Yufu Liu, Tsung Nan Lo, Wen Hung Huang
  • Publication number: 20230378314
    Abstract: A method for fabricating high electron mobility transistor (HEMT) includes the steps of: forming a first barrier layer on a substrate; forming a p-type semiconductor layer on the first barrier layer; forming a hard mask on the p-type semiconductor layer; patterning the hard mask and the p-type semiconductor layer; and forming a spacer adjacent to the hard mask and the p-type semiconductor layer.
    Type: Application
    Filed: July 13, 2023
    Publication date: November 23, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Bo-Rong Chen, Che-Hung Huang, Chun-Ming Chang, Yi-Shan Hsu, Chih-Tung Yeh, Shin-Chuan Huang, Wen-Jung Liao, Chun-Liang Hou
  • Patent number: 11820607
    Abstract: In certain embodiments, a system includes: a source lane configured to move a first die container between a load port and a source lane staging area; an inspection sensor configured to produce a sensor result based on a die on the first die container; a pass target lane configured to move a second die container between a pass target lane out port and a pass target lane staging area; a fail target lane configured to move a third die container between a fail target lane out port and a fail target lane staging area; and a conveyor configured to move the die from the first die container at the source lane staging area to either the second die container at the pass target lane staging area or the fail target lane staging area based on the sensor result.
    Type: Grant
    Filed: August 9, 2022
    Date of Patent: November 21, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tsung-Sheng Kuo, Chih-Hung Huang, Yi-Fam Shiu, Chueng-Jen Wang, Hsuan Lee, Jiun-Rong Pai
  • Publication number: 20230369448
    Abstract: A method for fabricating high electron mobility transistor (HEMT) includes the steps of: forming a first barrier layer on a substrate; forming a p-type semiconductor layer on the first barrier layer; forming a hard mask on the p-type semiconductor layer; patterning the hard mask and the p-type semiconductor layer; and forming a spacer adjacent to the hard mask and the p-type semiconductor layer.
    Type: Application
    Filed: July 13, 2023
    Publication date: November 16, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Bo-Rong Chen, Che-Hung Huang, Chun-Ming Chang, Yi-Shan Hsu, Chih-Tung Yeh, Shin-Chuan Huang, Wen-Jung Liao, Chun-Liang Hou
  • Publication number: 20230369407
    Abstract: The current disclosure describes techniques for individually selecting the number of channel strips for a device. The channel strips are selected by defining a three-dimensional active region that include a surface active area and a depth/height. Semiconductor strips in the active region are selected as channel strips. Semiconductor strips contained in the active region will be configured to be channel strips. Semiconductor strips not included in the active region are not selected as channel strips and are separated from source/drain structures by an auxiliary buffer layer.
    Type: Application
    Filed: July 26, 2023
    Publication date: November 16, 2023
    Inventors: Ya-Jui Tsou, Zong-You Luo, Wen Hung Huang, Jhih-Yang Yan, Chee-Wee Liu
  • Publication number: 20230369168
    Abstract: An integrated circuit (IC) package includes one or more microelectronic devices disposed between a first side and an opposing second side of the IC package and further includes a metal frame structure comprising a metal layer disposed at the second side, an embedded ground plane (EGP) structure encircling the one or more microelectronic devices, and a set of stacked conductive structures extending from the EGP structure to the first side through a set of one or more redistribution layers at the first side. The IC package further can include an array of package contacts disposed at the first side and an encapsulant layer encapsulating the one or more microelectronic devices in a volume defined by an inner sidewall of the EGP structure.
    Type: Application
    Filed: May 10, 2022
    Publication date: November 16, 2023
    Inventors: Kuan-Hsiang Mao, Chin Teck Siong, Wen Hung Huang
  • Publication number: 20230360939
    Abstract: In certain embodiments, a workstation includes: a cleaning station configured to clean a die vessel, wherein the die vessel is configured to secure a semiconductor die; an inspection station configured to inspect the die vessel after cleaning to determine whether the die vessel is identified as passing inspection; and a conveyor configured to move the die vessel between the cleaning station and the inspection station.
    Type: Application
    Filed: July 14, 2023
    Publication date: November 9, 2023
    Inventors: Tsung-Sheng KUO, Guan-Wei HUANG, Chih-Hung HUANG, Yang-Ann CHU, Hsu-Shui LIU, Jiun-Rong PAI
  • Publication number: 20230343403
    Abstract: A low voltage one-time-programmable memory includes a first conductive layer, a first via, a second conductive layer, a select transistor, a second via and a third conductive layer. The first via is electrically connected to the first conductive layer. The second conductive layer is electrically connected to the first via. The select transistor is electrically connected to the second conductive layer. The second via is electrically connected to the second conductive layer. The third conductive layer is electrically connected to the second via. A first current passed through the second via is a sum of a second current passed through the first via and a third current passed through the select transistor.
    Type: Application
    Filed: July 18, 2022
    Publication date: October 26, 2023
    Inventors: Ya-Chin KING, Chrong-Jung LIN, Yao-Hung HUANG
  • Publication number: 20230343749
    Abstract: Semiconductor packages with embedded wiring on re-distributed bumps are described. In an illustrative, non-limiting embodiment, a semiconductor package may include an integrated circuit (IC) having a plurality of pads and a re-distribution layer (RDL) coupled to the IC without any substrate or lead frame therebetween, where the RDL comprises a plurality of terminals, and where one or more of the plurality of pads are wire bonded to a corresponding one or more of the plurality of terminals.
    Type: Application
    Filed: April 25, 2022
    Publication date: October 26, 2023
    Applicant: NXP B.V.
    Inventors: Kuan-Hsiang Mao, Norazham Mohd Sukemi, Chin Teck Siong, Tsung Nan Lo, Wen Hung Huang
  • Publication number: 20230339560
    Abstract: A motorcycle windshield structure includes a windshield support frame set that supports a windshield and includes a vehicle body mounting frame seat unit, a sliding frame unit on the vehicle body mounting frame seat unit, and a power unit driving the sliding frame unit to slide. The vehicle body mounting frame seat unit includes a slide rail mounting frame having first and second guide roller sets. The sliding frame unit includes slide rails connected to the slide rail mounting frame and a sliding frame slidable along the slide rails. The power unit includes a power motor and first and second control cables respectively wound around the first and second guide roller sets. The power motor and the first and second control cables define, respectively, a raising stroke and a lowering stroke for the windshield, which are arranged, in a parallel manner, in a vehicle left-right direction.
    Type: Application
    Filed: March 24, 2023
    Publication date: October 26, 2023
    Inventors: FENG-CHIH TSAI, CHENG-HUNG HUANG, EN-TI YEH
  • Publication number: 20230335614
    Abstract: A method for fabricating high electron mobility transistor (HEMT) includes the steps of: forming a buffer layer on a substrate; forming a first barrier layer on the buffer layer; forming a second barrier layer on the first barrier layer; forming a first hard mask on the second barrier layer; removing the first hard mask and the second barrier layer to form a recess; and forming a p-type semiconductor layer in the recess.
    Type: Application
    Filed: June 28, 2023
    Publication date: October 19, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chun-Ming Chang, Che-Hung Huang, Wen-Jung Liao, Chun-Liang Hou, Chih-Tung Yeh
  • Publication number: 20230335424
    Abstract: A multiple transport carrier docking device may be capable of storing and/or staging a plurality of transport carriers in a chamber of the multiple transport carrier docking device, and may be capable of forming an air-tight seal around a transport carrier in the chamber. Semiconductor wafers in the transport carrier may be accessed by a wafer transport tool while the air-tight seal around the transport carrier prevents and/or reduces the likelihood that contaminants in the semiconductor fabrication facility will reach the semiconductor wafers. The air-tight seal around the transport carrier may reduce defects of the semiconductor wafers that might otherwise be caused by the contaminants, may increase manufacturing yield and quality in the semiconductor fabrication facility, and/or may permit the continued reduction in device and/or feature sizes of integrated circuits and/or semiconductor devices that are to be formed on semiconductor wafers.
    Type: Application
    Filed: May 15, 2023
    Publication date: October 19, 2023
    Inventors: Chih-Hung HUANG, Cheng-Lung WU, Yang-Ann CHU, Hsuan LEE, Jiun-Rong PAI
  • Patent number: 11791293
    Abstract: A semiconductor device and a method of manufacturing the same are provided. The semiconductor device includes an antenna zone and a routing zone. The routing zone is disposed on the antenna zone, where the antenna zone includes a first insulation layer and two or more second insulation layer and a thickness of the first insulation layer is different from that of the second insulation layer.
    Type: Grant
    Filed: September 20, 2021
    Date of Patent: October 17, 2023
    Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventors: Wen Hung Huang, Yan Wen Chung, Wei Chu Sun