Patents by Inventor Ivo Raaijmakers

Ivo Raaijmakers has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7102235
    Abstract: Method and structures are provided for conformal lining of dual damascene structures in integrated circuits. Trenches and contact vias are formed in insulating layers. The trenches and vias are exposed to alternating chemistries to form monolayers of a desired lining material. Exemplary process flows include alternately pulsed metal halide and ammonia gases injected into a constant carrier flow. Self-terminated metal layers are thus reacted with nitrogen. Near perfect step coverage allows minimal thickness for a diffusion barrier function, thereby maximizing the volume of a subsequent filling metal for any given trench and via dimensions.
    Type: Grant
    Filed: December 15, 2003
    Date of Patent: September 5, 2006
    Assignee: ASM International N.V.
    Inventors: Ivo Raaijmakers, Suvi P. Haukka, Yille A. Saanila, Pekka J. Soininen, Kai-Erik Elers, Ernst H. A. Granneman
  • Patent number: 7060132
    Abstract: A method and apparatus for growing a thin film onto a substrate is disclosed. According to one embodiment, a plurality of substrates, each having a width and a length, are placed in a reaction space and the substrates are subjected to surface reactions of vapor-phase reactants according to the ALD method to form a thin film on the surfaces of the substrates. The reaction space comprises an elongated gas channel having a cross-section with a width greater that the height and which has a length which is at least 2 times greater than the length of one substrate in the direction of the gas flow in the channel, the channel having a folded configuration with at least one approximately 180 degree turn in the direction of the gas flow.
    Type: Grant
    Filed: October 11, 2002
    Date of Patent: June 13, 2006
    Assignee: ASM International N.V.
    Inventors: Sven Lindfors, Ivo Raaijmakers
  • Patent number: 7034397
    Abstract: A method is proposed for improving the adhesion between a diffusion barrier film and a metal film. Both the diffusion barrier film and the metal film can be deposited in either sequence onto a semiconductor substrate. A substrate comprising a first film, which is one of a diffusion barrier film or a metal film, with the first film being exposed at least at part of the surface area of the substrate, is exposed to an oxygen-containing reactant to create a surface termination of about one monolayer of oxygen-containing groups or oxygen atoms on the exposed parts of the first film. Then the second film, which is the other one of a diffusion barrier film and a metal film, is deposited onto the substrate. Furthermore, an oxygen bridge structure is proposed, the structure comprising a diffusion barrier film and a metal film having an interface with the diffusion barrier film, wherein the interface comprises a monolayer of oxygen atoms.
    Type: Grant
    Filed: October 28, 2003
    Date of Patent: April 25, 2006
    Assignee: ASM Internationl, N.V.
    Inventors: Ivo Raaijmakers, Pekka J. Soininen, Kai-Erik Elers
  • Patent number: 7018504
    Abstract: A wafer carrier adapted to hold a plurality of wafers and is positioned on an elevator plate in a load lock. The elevator plate is adapted to move between a first position with the carrier in a first chamber of the load lock and a second position with the carrier in the auxiliary chamber. In the second position, the elevator plate substantially seals the auxiliary chamber from the first chamber. In use, a first wafer is placed onto the wafer carrier. The wafer carrier can moved into the auxiliary chamber before or after the first wafer is placed onto the wafer carrier. The first wafer is auxiliary processed in the auxiliary chamber. A second wafer is placed onto the wafer carrier. Preferably after the second wafer is placed onto the wafer carrier, the first wafer is removed from the load lock. A third wafer is preferably then placed onto the wafer carrier so that the second wafer can cool. The second wafer is then removed from the load lock. The cycle is repeated.
    Type: Grant
    Filed: September 11, 2000
    Date of Patent: March 28, 2006
    Assignee: ASM America, Inc.
    Inventors: Ivo Raaijmakers, Ravinder Aggarwal, James Kusbel
  • Publication number: 20060051940
    Abstract: A liquid injector is used to vaporize and inject a silicon precursor into a process chamber to form silicon-containing layers during a semiconductor fabrication process. The injector is connected to a source of silicon precursor, which preferably comprises liquid trisilane in a mixture with one or more dopant precursors. The mixture is metered as a liquid and delivered to the injector, where it is then vaporized and injected into the process chamber.
    Type: Application
    Filed: September 3, 2004
    Publication date: March 9, 2006
    Inventors: Michael Todd, Ivo Raaijmakers
  • Publication number: 20050250302
    Abstract: Thin, smooth silicon-containing films are prepared by deposition methods that utilize a silicon containing precursor. In preferred embodiments, the methods result in Si-containing films that are continuous and have a thickness of about 150 ? or less, a surface roughness of about 5 ? rms or less, and a thickness non-uniformity of about 20% or less. Preferred silicon-containing films display a high degree of compositional uniformity when doped or alloyed with other elements. Preferred deposition methods provide improved manufacturing efficiency and can be used to make various useful structures such as wetting layers, HSG silicon, quantum dots, dielectric layers, anti-reflective coatings (ARC's), gate electrodes and diffusion sources.
    Type: Application
    Filed: July 12, 2005
    Publication date: November 10, 2005
    Inventors: Michael Todd, Ivo Raaijmakers
  • Patent number: 6962859
    Abstract: Thin, smooth silicon-containing films are prepared by deposition methods that utilize a silicon-containing precursor. In preferred embodiments, the methods result in Si-containing films that are continuous and have a thickness of about 150 ? or less, a surface roughness of about 5 ? rms or less, and a thickness non-uniformity of about 20% or less. Preferred silicon-containing films display a high degree of compositional uniformity when doped or alloyed with other elements. Preferred deposition methods provide improved manufacturing efficiency and can be used to make various useful structures such as wetting layers, HSG silicon, quantum dots, dielectric layers, anti-reflective coatings (ARC's), gate electrodes and diffusion sources.
    Type: Grant
    Filed: February 11, 2002
    Date of Patent: November 8, 2005
    Assignee: ASM America, Inc.
    Inventors: Michael A. Todd, Ivo Raaijmakers
  • Patent number: 6957690
    Abstract: Methods and apparatuses are provided for cooling semiconductor substrates prior to handling. In one embodiment, a substrate and support structure combination is lifted after high temperature processing to a cold wall of a thermal processing chamber, which acts as a heat sink. Conductive heat transfer across a small gap from the substrate to the heat sink speeds wafer cooling prior to handling the wafer (e.g., with a robot). In another embodiment, a separate plate is kept cool within a pocket during processing, and is moved close to the substrate and support after processing. In yet another embodiment, a cooling station between a processing chamber and a storage cassette includes two movable cold plates, which are movable to positions closely spaced on either side of the wafer.
    Type: Grant
    Filed: May 30, 2000
    Date of Patent: October 25, 2005
    Assignee: ASM America, Inc.
    Inventor: Ivo Raaijmakers
  • Publication number: 20050229855
    Abstract: Methods and apparatuses are provided for cooling semiconductor substrates prior to handling. In one embodiment, a substrate and support structure combination is lifted after high temperature processing to a cold wall of a thermal processing chamber, which acts as a heat sink. Conductive heat transfer across a small gap from the substrate to the heat sink speeds wafer cooling prior to handling the wafer (e.g., with a robot). In another embodiment, a separate plate is kept cool within a pocket during processing, and is moved close to the substrate and support after processing. In yet another embodiment, a cooling station between a processing chamber and a storage cassette includes two movable cold plates, which are movable to positions closely spaced on either side of the wafer.
    Type: Application
    Filed: June 1, 2005
    Publication date: October 20, 2005
    Inventor: Ivo Raaijmakers
  • Publication number: 20050205010
    Abstract: A single-wafer, chemical vapor deposition reactor is provided with hydrogen and silicon source gas suitable for epitaxial silicon deposition, as well as a safe mixture of oxygen in a non-reactive gas. Methods are provided for forming oxide and silicon layers within the same chamber. In particular, a sacrificial oxidation is performed, followed by a hydrogen bake to sublime the oxide and leave a clean substrate. Epitaxial deposition can follow in situ. A protective oxide can also be formed over the epitaxial layer within the same chamber, preventing contamination of the critical epitaxial layer. Alternatively, the oxide layer can serve as the gate dielectric, and a polysilicon gate layer can be formed in situ over the oxide.
    Type: Application
    Filed: May 6, 2005
    Publication date: September 22, 2005
    Inventors: Armand Ferro, Ivo Raaijmakers, Derrick Foster
  • Patent number: 6936535
    Abstract: The present invention provides a method of fabricating a semiconductor device, which could advance the commercialization of semiconductor devices with a copper interconnect. In a process of metal interconnect line fabrication, a TiN thin film combined with an Al intermediate layer is used as a diffusion barrier on trench or via walls. For the formation, Al is deposited on the TiN thin film followed by copper filling the trench. Al diffuses to TiN layer and reacts with oxygen or nitrogen, which will stuff grain boundaries efficiently, thereby blocking the diffusion of copper successfully.
    Type: Grant
    Filed: December 5, 2001
    Date of Patent: August 30, 2005
    Assignee: ASM International NV
    Inventors: Ki-Bum Kim, Pekka J. Soininen, Ivo Raaijmakers
  • Publication number: 20050183829
    Abstract: Improvements in the design of a low mass wafer holder are disclosed. The improvements include the use of peripherally located, integral lips to space a wafer or other substrate above the base plate of the wafer holder. A uniform gap is thus provided between the wafer and the base plate, such as will temper rapid heat exchanges, allow gas to flow between the wafer and wafer holder during wafer pick-up, and keep the wafer holder thermally coupled with the wafer. At the same time, thermal disturbance from lip contact with the wafer is reduced. Gas flow during pick-up can be provided through radial channels in a wafer holder upper surface, or through backside gas passages. A thicker ring is provided at the wafer holder perimeter, and is provided in some embodiments as an independent piece to accommodate stresses accompanying thermal gradients. Self-centering mechanisms are provided to keep the wafer holder centered relative to a spider which is subject to differential thermal expansion.
    Type: Application
    Filed: March 21, 2005
    Publication date: August 25, 2005
    Inventors: Matthew Goodman, Ivo Raaijmakers, Loren Jacobs, Franciscus van Bilsen, Michael Meyer, Eric Barrett
  • Patent number: 6933225
    Abstract: Thin films are formed by atomic layer deposition, whereby the composition of the film can be varied from monolayer to monolayer during cycles including alternating pulses of self-limiting chemistries. In the illustrated embodiments, varying amounts of impurity sources are introduced during the cyclical process. A graded gate dielectric is thereby provided, even for extremely thin layers. The gate dielectric as thin as 2 nm can be varied from pure silicon oxide to oxynitride to silicon nitride. Similarly, the gate dielectric can be varied from aluminum oxide to mixtures of aluminum oxide and a higher dielectric material (e.g., ZrO2) to pure high k material and back to aluminum oxide. In another embodiment, metal nitride (e.g., WN) is first formed as a barrier for lining dual damascene trenches and vias. During the alternating deposition process, copper can be introduced, e.g.
    Type: Grant
    Filed: September 23, 2002
    Date of Patent: August 23, 2005
    Assignee: ASM International N.V.
    Inventors: Christiaan J. Werkhoven, Ivo Raaijmakers, Suvi P. Haukka
  • Publication number: 20050181555
    Abstract: Thin films are formed by formed by atomic layer deposition, whereby the composition of the film can be varied from monolayer to monolayer during cycles including alternating pulses of self-limiting chemistries. In the illustrated embodiments, varying amounts of impurity sources are introduced during the cyclical process. A graded gate dielectric is thereby provided, even for extremely thin layers. The gate dielectric as thin as 2 nm can be varied from pure silicon oxide to oxynitride to silicon nitride. Similarly, the gate dielectric can be varied from aluminum oxide to mixtures of aluminum oxide and a higher dielectric material (e.g., ZrO2) to pure high k material and back to aluminum oxide. In another embodiment, metal nitride (e.g., WN) is first formed as a barrier for lining dual damascene trenches and vias. During the alternating deposition process, copper can be introduced, e.g.
    Type: Application
    Filed: April 13, 2005
    Publication date: August 18, 2005
    Inventors: Suvi Haukka, Ivo Raaijmakers, Wei Li, Juhana Kostamo, Hessel Sprey, Christiaan Werkhoven
  • Patent number: 6924463
    Abstract: A wafer temperature estimator calibrates contact-type temperature sensor measurements that are used by a temperature controller to control substrate temperature in a high temperature processing chamber. Wafer temperature estimator parameters provide an estimated wafer temperature from contact-type temperature sensor measurements. The estimator parameters are refined using non-contact-type temperature sensor measurements during periods when the substrate temperature is decreasing or the heaters are off. A corresponding temperature control system includes a heater, a contact-type temperature sensor in close proximity to the substrate, and an optical pyrometer placed to read temperature directly from the substrate. A wafer temperature estimator uses the estimator parameters and measurements from the contact-type sensor to determine an estimated wafer temperature. A temperature controller reads the estimated wafer temperature and makes changes to the heater power accordingly.
    Type: Grant
    Filed: June 11, 2003
    Date of Patent: August 2, 2005
    Assignee: ASM America, Inc.
    Inventors: James J. Donald, Ivo Raaijmakers
  • Patent number: 6900877
    Abstract: A method and apparatus is provided for determining substrate drift from its nominal or intended position. The apparatus includes at least two fixed reference points. The reference points can be fixed with respect to the processing tool, or with respect to the end effector. As a robotic arm moves the end effector and substrate along a path, a camera captures images of the edge of the substrate and the reference points. Two or more cameras can also be provided. A computer can then calculate positional drift of the substrate, relative to its expected or centered position on the end effector, based upon these readings, and this drift can be corrected in subsequent robotic arm movement.
    Type: Grant
    Filed: June 12, 2002
    Date of Patent: May 31, 2005
    Assignee: ASM American, Inc.
    Inventor: Ivo Raaijmakers
  • Patent number: 6893507
    Abstract: Improvements in the design of a low mass wafer holder are disclosed. The improvements include the use of peripherally located, integral lips to space a wafer or other substrate above the base plate of the wafer holder. A uniform gap is thus provided between the wafer and the base plate, such as will temper rapid heat exchanges, allow gas to flow between the wafer and wafer holder during wafer pick-up, and keep the wafer holder thermally coupled with the wafer. At the same time, thermal disturbance from lip contact with the wafer is reduced. Gas flow during pick-up can be provided through radial channels in a wafer holder upper surface, or through backside gas passages. A thicker ring is provided at the wafer holder perimeter, and is provided in some embodiments as an independent piece to accommodate stresses accompanying thermal gradients. Self-centering mechanisms are provided to keep the wafer holder centered relative to a spider which is subject to differential thermal expansion.
    Type: Grant
    Filed: July 18, 2002
    Date of Patent: May 17, 2005
    Assignee: ASM America, Inc.
    Inventors: Matthew G. Goodman, Ivo Raaijmakers, Loren R. Jacobs, Franciscus B. M. van Bilsen, Michael J. Meyer, Eric Alan Barrett
  • Publication number: 20050101132
    Abstract: The present invention provides a method of fabricating a semiconductor device, which could advance the commercialization of semiconductor devices with a copper interconnect. In a process of metal interconnect line fabrication, a TiN thin film combined with an Al intermediate layer is used as a diffusion barrier on trench or via walls. For the formation, Al is deposited on the TiN thin film followed by copper filling the trench. Al diffuses to TiN layer and reacts with oxygen or nitrogen, which will stuff grain boundaries efficiently, thereby blocking the diffusion of copper successfully.
    Type: Application
    Filed: November 26, 2004
    Publication date: May 12, 2005
    Inventors: Ki-Bum Kim, Pekka Soininen, Ivo Raaijmakers
  • Publication number: 20050092235
    Abstract: Methods for depositing epitaxial films such as epitaxial Ge and SiGe films. During cooling from high temperature processing to lower deposition temperatures for Ge-containing layers, Si or Ge compounds are provided to the substrate. Smooth, thin, relatively defect-free Ge or SiGe layers result. Retrograded relaxed SiGe is also provided between a relaxed, high Ge-content seed layer and an overlying strained layer.
    Type: Application
    Filed: November 18, 2004
    Publication date: May 5, 2005
    Inventors: Paul Brabant, Joseph Italiano, Chantal Arena, Pierre Tomasini, Ivo Raaijmakers, Matthias Bauer
  • Publication number: 20050092249
    Abstract: Various reactors for growing thin films on a substrate by subjecting the substrate to alternately repeated surface reactions of vapor-phase reactants are disclosed. In one embodiment, the reactor comprises a reaction chamber. A showerhead plate divides the reaction chamber into upper and lower parts. A first precursor is directed towards the lower half of the reaction chamber and a second precursor is directed towards the upper half of the reaction chamber. The substrate is disposed within the lower half of the reaction chamber. The showerhead plate includes plurality passages such that the upper half is in communication with the lower half of the reaction chamber. In another arrangement, the upper half of the reaction chamber defines a plasma cavity in which in-situ radicals are formed. In yet another arrangement, the reaction chamber includes a shutter plate, which is configured to selectively open and close the passages in the showerhead plate.
    Type: Application
    Filed: November 18, 2004
    Publication date: May 5, 2005
    Inventors: Olli Kilpela, Ville Saanila, Wei-Min Li, Kai-Erik Elers, Juhana Kostamo, Ivo Raaijmakers, Ernst Granneman