Patents by Inventor J. Howard

J. Howard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11031555
    Abstract: A radio frequency (RF) switching circuit includes stacked phase-change material (PCM) RF switches. Each of the PCM RF switches includes a PCM, a heating element transverse to the PCM, and first and second heating element contacts. The first heating element contact is coupled to an RF ground, and the second heating element contact may also be coupled to an RF ground. Each of the PCM RF switches can also include first and second PCM contacts. A compensation capacitor can be coupled across the first and second PCM contacts in at least one of the PCM RF switches.
    Type: Grant
    Filed: June 23, 2020
    Date of Patent: June 8, 2021
    Assignee: Newport Fab, LLC
    Inventors: Nabil El-Hinnawy, Gregory P. Slovin, Chris Masse, Paul D. Hurwitz, David J. Howard
  • Patent number: 11031689
    Abstract: A rapid testing read out integrated circuit (ROIC) includes phase-change material (PCM) radio frequency (RF) switches residing on an application specific integrated circuit (ASIC). Each PCM RF switch includes a PCM and a heating element transverse to the PCM. The ASIC is configured to provide amorphizing and crystallizing electrical pulses to a selected PCM RF switch. The ASIC is also configured to determine if the selected PCM RF switch is in an OFF state or in an ON state. In one implementation, a testing method using the ASIC is disclosed.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: June 8, 2021
    Assignee: Newport Fab, LLC
    Inventors: David J. Howard, Gregory P. Slovin, Nabil Ei-Hinnawy
  • Publication number: 20210161661
    Abstract: Methods of transcatheter delivery of a prosthetic heart valve. A distal region of a guide member assembly is advanced into a heart of a patient. The distal region is docked to native anatomy of the heart. A delivery device, including a collapsed prosthetic heart valve, is advanced over the docked guide member assembly. The collapsed prosthetic heart valve is located at an implantation site. The prosthetic heart valve is deployed from the delivery device, and then the delivery device is removed from the patient. At least a portion of the guide member assembly is removed from the patient. In some embodiments, the docking structure is docked to one or more of native mitral valve leaflets, chordae in the left ventricle, or walls of the left ventricle as part of a transseptal mitral valve delivery procedure.
    Type: Application
    Filed: February 11, 2021
    Publication date: June 3, 2021
    Applicant: Medtronic Vascular, Inc.
    Inventors: Marc A. Anderson, Grainne Teresa Carroll, Paul Devereux, Niall Duffy, Matthew Fleming, Alexander J. Hill, Elliot J. Howard, James R. Keogh, Marian Patricia Lally, Luke Lehmann, Jeffrey Madden, Kevin M. Mauch, Ciaran McGuinness, Brian T. McHenry, Karl L. Olney, Geoffrey Orth, Edward Sarnowski, Elizabeth A. Schotzko, Benjamin Wong
  • Patent number: 11000024
    Abstract: A device, system, and method of controlling pests are disclosed. A pest control device includes a sensor having a sensor cell and a controller. A surface of the sensor cell is coated with an agent that reacts with a targeted biochemical analyte secreted by pests. The controller is coupled to the sensor and is configured to receive sensor data from the sensor cell indicative of a rate of change in sensor mass detected on the surface of the sensor cell, determine whether the rate of change in the sensor mass based on the received sensor data exceeds a predefined threshold rate, and transmit a pest detection alert notification to a server in response to a determination that the rate of change exceeds the predetermined threshold rate.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: May 11, 2021
    Assignee: Dow AgroSciences LLC
    Inventors: Mark W. Beach, Andrey N. Soukhojak, Neil A. Spomer, Shane L. Mangold, Ravi B. Shankar, Sukrit Mukhopadhyay, Jeremy Chris P. Reyes, Bruce A. Jacobs, William L. Winniford, Ronda L. Hamm, Phillip J. Howard, Andrew J. Pasztor, Jr., Mary D. Evenson, Thomas G. Patterson, Natalie C. Giampietro
  • Publication number: 20210135100
    Abstract: A radio frequency (RF) device includes a phase-change material (PCM) situated over a sheet of thermally conductive and electrically insulating material, a heating element situated under the sheet of thermally conductive and electrically insulating material, and an input/output terminal situated over the PCM. The heating element is situated in a dielectric. A heat spreader is situated under the dielectric and over a substrate. Metal interconnect layers can be situated under and/or over the PCM, with the substrate situated below the metal interconnect layers.
    Type: Application
    Filed: January 13, 2021
    Publication date: May 6, 2021
    Inventors: Gregory P. Slovin, Nabil El-Hinnawy, Jefferson E. Rose, David J. Howard
  • Patent number: 10991631
    Abstract: A silicon-on-insulator (SOI) CMOS transistor and a SOI heterojunction bipolar transistor (HBT) are fabricated on the same semiconductor substrate. First and second SOI regions are formed over the semiconductor substrate. A SOI CMOS transistor is fabricated in the first SOI region, and a collector region of the SOI HBT is fabricated in the second SOI region. The collector region can be formed by performing a first implant to a local collector region in the second SOI region, and performing a second implant to an extrinsic collector region in the second SOI region, wherein the extrinsic collector region is separated from the local collector region. A SiGe base is formed over the collector region, wherein a dielectric structure separates portions of the SiGe region and the extrinsic collector region. The SOI CMOS transistor and SOI HBT may be used to implement a front end module of an RF system.
    Type: Grant
    Filed: July 2, 2018
    Date of Patent: April 27, 2021
    Assignee: Newport Fab, LLC
    Inventors: Edward J. Preisler, Paul D. Hurwitz, Marco Racanelli, David J. Howard
  • Publication number: 20210111249
    Abstract: A semiconductor structure includes a porous semiconductor segment adjacent to a first region of a substrate, and a crystalline epitaxial layer situated over the porous semiconductor segment and over the first region of the substrate. A first semiconductor device is situated in the crystalline epitaxial layer over the porous semiconductor segment. The first region of the substrate has a first dielectric constant, and the porous semiconductor segment has a second dielectric constant that is substantially less than the first dielectric constant such that the porous semiconductor segment reduces signal leakage from the first semiconductor device. The semiconductor structure can include a second semiconductor device situated in the crystalline epitaxial layer over the first region of the substrate, and an electrical isolation region separating the first and second semiconductor devices.
    Type: Application
    Filed: October 10, 2019
    Publication date: April 15, 2021
    Inventors: Paul D. Hurwitz, Edward Preisler, David J. Howard, Marco Racanelli
  • Publication number: 20210108691
    Abstract: A grommet for a heat shield may comprise a radially outward surface and a radially inward surface opposite the radially outward surface. A plug opening may be formed in the radially outward surface. An exterior radial surface may extend from the radially outward surface to the radially inward surface. A shield groove may be formed in the exterior radial surface. An inward protrusion may extend radially inward from the radially inward surface.
    Type: Application
    Filed: October 9, 2019
    Publication date: April 15, 2021
    Applicant: GOODRICH CORPORATION
    Inventors: Ty Austin Hoglund, Paul J. Howard
  • Publication number: 20210111019
    Abstract: A semiconductor structure includes a substrate having a first dielectric constant, a porous semiconductor layer situated over the substrate, and a crystalline epitaxial layer situated over the porous semiconductor layer. A first semiconductor device is situated in the crystalline epitaxial layer. The porous semiconductor layer has a second dielectric constant that is substantially less than the first dielectric constant such that the porous semiconductor layer reduces signal leakage from the first semiconductor device. The semiconductor structure can include a second semiconductor device situated in the crystalline epitaxial layer, and an electrical isolation region separating the first and second semiconductor devices.
    Type: Application
    Filed: October 9, 2019
    Publication date: April 15, 2021
    Inventors: Paul D. Hurwitz, Edward Preisler, David J. Howard, Marco Racanelli
  • Publication number: 20210111101
    Abstract: A semiconductor structure includes a semiconductor substrate, a porous semiconductor region within the semiconductor substrate, and through-substrate via (TSV) within the porous semiconductor region. The porous semiconductor region causes the semiconductor structure and/or the TSV to withstand thermal and mechanical stresses. Alternatively, the semiconductor structure includes a semiconductor buffer ring within the porous semiconductor region, and the TSV within the semiconductor buffer ring.
    Type: Application
    Filed: December 4, 2019
    Publication date: April 15, 2021
    Inventor: David J. Howard
  • Publication number: 20210108024
    Abstract: An epoxy resin composition is provided which comprises an epoxy resin and a reactive diluent comprising one or more of the monoesters of epoxidized soy oil characterized by a ratio of mols of epoxide groups to mols of ester on the whole of at least 1.35:1. A thermoset plastic composition is also provided which comprises an epoxy resin composition as described, with an amine curing agent.
    Type: Application
    Filed: March 6, 2018
    Publication date: April 15, 2021
    Applicant: Archer Daniels Midland Company
    Inventors: Erik Hagberg, Stehpen J. Howard, Teodora R. Tabuena-Salyers
  • Patent number: 10973223
    Abstract: A pest control device comprising a capacitive sensor array including a plurality of sensor pads, the capacitive sensor array being configured to generate an electrical output signal indicating the state of each sensor pad, and an electronic controller electrically connected to the capacitive sensor array, the electronic controller including a processor and a memory including a plurality of instructions, which, when executed by the processor, causes the processor to: receive the electrical output signals from the capacitive sensor array, determine a measured capacitance value for each sensor pad based on each electrical output signal, calculate a baseline for each sensor pad based on the measured capacitance value of the sensor pad, determine whether a difference between the measured capacitance value of at least one sensor pad and its corresponding baseline exceeds a first predetermined threshold, update a counter when the first predetermined threshold is exceeded, and record an event indicative of a presence
    Type: Grant
    Filed: April 20, 2020
    Date of Patent: April 13, 2021
    Assignee: Dow AgroSciences LLC
    Inventors: Phillip J. Howard, Richard V. Baxter, Jr., Douglas K. Brune, Uriel Kluk, Edward G. Beistle, Christopher Siler, Marc Black
  • Patent number: 10978639
    Abstract: A circuit according to the present application includes a diode or other non-linear device coupled to a heating element of a phase-change material (PCM) radio frequency (RF) switch. The diode or other non-linear device allows an amorphizing pulse or a crystallizing pulse to pass to a first terminal of the heating element. The diode or other non-linear device substantially prevents a pulse generator providing the amorphizing pulse or crystallizing pulse from interfering with RF signals at RF terminals of the PCM RF switch. In an array of PCM cells each including a diode or other non-linear device, the diode or other non-linear device substantially prevents sneak paths that would otherwise enable an amorphizing or crystallizing pulse intended for a heating element of a selected cell of the array to be provided to heating elements of unselected cells of the array.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: April 13, 2021
    Assignee: Newport Fab, LLC
    Inventors: Nabil El-Hinnawy, Jefferson E. Rose, David J. Howard, Gregory P. Slovin
  • Publication number: 20210102808
    Abstract: Various products that are used to align objects and features in an area are shown. In one example, a laser target provides optical communication between a target area of the laser target and a non-target area that is offset from the target area. Some light emitted towards the target area will be redirected to emit from the non-target area, and some light emitted towards the non-target area will be redirected to emit from the target area. In another example, a laser target includes reflective portions and non-reflective portions that facilitate aiming a laser target towards a center of the laser target.
    Type: Application
    Filed: December 14, 2020
    Publication date: April 8, 2021
    Inventors: Samuel J. Howard, Michael Dan Huh
  • Patent number: 10944052
    Abstract: A radio frequency (RF) switch includes a heating element, an aluminum nitride layer situated over the heating element, and a phase-change material (PCM) situated over the aluminum nitride layer. An inside segment of the heating element underlies an active segment of the PCM, and an intermediate segment of the heating element is situated between a terminal segment of the heating element and the inside segment of the heating element. The aluminum nitride layer situated over the inside segment of the heating element provides thermal conductivity and electrical insulation between the heating element and the active segment of the PCM. The aluminum nitride layer extends into the intermediate segment of the heating element and provides chemical protection to the intermediate segment of the heating element, such that the intermediate segment of the heating element remains substantially unetched and with substantially same thickness as the inside segment.
    Type: Grant
    Filed: October 18, 2018
    Date of Patent: March 9, 2021
    Assignee: Newport Fab, LLC
    Inventors: Gregory P. Slovin, Nabil El-Hinnawy, David J. Howard, Jefferson E. Rose
  • Publication number: 20210061764
    Abstract: Bivalent linkers to be included in or for preparing vitamin, drug, diagnostic agent, and/or imaging agent conjugates are described.
    Type: Application
    Filed: April 17, 2020
    Publication date: March 4, 2021
    Inventors: Iontcho R. Vlahov, Christopher P. Leamon, Apparao Satyam, Stephen J. Howard
  • Patent number: 10937960
    Abstract: A radio frequency (RF) switch includes a phase-change material (PCM), a heating element underlying an active segment of the PCM and extending outward and transverse to the PCM, a capacitive RF terminal, and an ohmic RF terminal. The capacitive RF terminal can include a first trench metal liner situated on a first passive segment of the PCM, and a dielectric liner separating the first trench metal liner from a first trench metal plug. The ohmic RF terminal can include a second trench metal liner situated on a second passive segment of the PCM, and a second trench metal plug ohmically connected to the second trench metal liner. Alternatively, the capacitive RF terminal and the ohmic RF terminal can include lower metal portions and upper metal portions. A MIM capacitor can be formed by the upper metal portion of the capacitive RF terminal, an insulator, and a patterned top plate.
    Type: Grant
    Filed: February 8, 2019
    Date of Patent: March 2, 2021
    Assignee: Newport Fab, LLC
    Inventors: Gregory P. Slovin, Nabil El-Hinnawy, Jefferson E. Rose, David J. Howard
  • Patent number: 10925728
    Abstract: Methods of transcatheter delivery of a prosthetic heart valve. A distal region of a guide member assembly is advanced into a heart of a patient. The distal region is docked to native anatomy of the heart. A delivery device, including a collapsed prosthetic heart valve, is advanced over the docked guide member assembly. The collapsed prosthetic heart valve is located at an implantation site. The prosthetic heart valve is deployed from the delivery device, and then the delivery device is removed from the patient. At least a portion of the guide member assembly is removed from the patient. In some embodiments, the docking structure is docked to one or more of native mitral valve leaflets, chordae in the left ventricle, or walls of the left ventricle as part of a transseptal mitral valve delivery procedure.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: February 23, 2021
    Assignee: Medtronic Vascular, Inc.
    Inventors: Marc A. Anderson, Grainne Teresa Carroll, Paul Devereux, Niall Duffy, Matthew Fleming, Alexander J. Hill, Elliot J. Howard, James R. Keogh, Marian Patricia Lally, Luke Lehmann, Jeffrey Madden, Kevin M. Mauch, Ciaran McGuinness, Brian T. McHenry, Karl L. Olney, Geoffrey Orth, Edward Sarnowski, Elizabeth A. Schotzko, Benjamin Wong
  • Patent number: 10916540
    Abstract: There are disclosed herein various implementations of a semiconductor device including a group III-V layer situated over a substrate, and a phase-change material (PCM) radio frequency (RF) switch situated over the group III-V layer. The PCM RF switch couples a group III-V transistor situated over the group III-V layer to one of an integrated passive element or another group III-V transistor situated over the group III-V layer. The PCM RF switch includes a heating element transverse to the PCM, the heating element underlying an active segment of the PCM. The PCM RF switch is configured to be electrically conductive when the active segment of the PCM is in a crystalline state, and to be electrically insulative when the active segment of the PCM is in an amorphous state.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: February 9, 2021
    Assignee: Newport Fab, LLC
    Inventors: Nabil El-Hinnawy, David J. Howard, Gregory P. Slovin, Jefferson E. Rose
  • Patent number: 10916585
    Abstract: A radio frequency (RF) switching circuit includes stacked phase-change material (PCM) RF switches. The stacked PCM RF switches can include a high shunt capacitance PCM RF switch having its heating element contacts near its PCM contacts, and a low shunt capacitance PCM RF switch having its heating element contacts far from its PCM contacts. An RF voltage is substantially uniformly distributed between the high shunt capacitance PCM RF switch and the low shunt capacitance PCM RF switch. The stacked PCM RF switches can also include a wide heating element PCM RF switch having a large PCM active segment, and a narrow heating element PCM RF switch having a small PCM active segment. The wide heating element PCM RF switch will have a higher breakdown voltage than the narrow heating element PCM RF switch.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: February 9, 2021
    Assignee: Newport Fab, LLC
    Inventors: Nabil El-Hinnawy, Paul D. Hurwitz, Gregory P. Slovin, Jefferson E. Rose, Roda Kanawati, David J. Howard