Patents by Inventor James Ibbetson

James Ibbetson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8530921
    Abstract: A monolithic LED chip is disclosed comprising a plurality of junctions or sub-LEDs (“sub-LEDs”) mounted on a submount. The sub-LEDs are serially interconnected such that the voltage necessary to drive the sub-LEDs is dependent on the number of serially interconnected sub-LEDs and the junction voltage of the sub-LEDs. Methods for fabricating a monolithic LED chip are also disclosed with one method comprising providing a single junction LED on a submount and separating the single junction LED into a plurality of sub-LEDs. The sub-LEDs are then serially interconnected such that the voltage necessary to drive the sub-LEDs is dependent on the number of the serially interconnected sub-LEDs and the junction voltage of the sub-LEDs.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: September 10, 2013
    Assignee: Cree, Inc.
    Inventors: James Ibbetson, Sten Heikman
  • Patent number: 8476668
    Abstract: An LED chip comprising a plurality of sub-LEDs on a submount. Electrically conductive and electrically insulating features are included that serially interconnect the sub-LEDs such that an electrical signal applied to the serially interconnected sub-LEDs along the electrically conductive features spreads to the serially interconnected sub-LEDs. A via is included that is arranged to electrically couple one of the sub-LEDs to the submount. The sub-LEDs can be interconnected by more than one of the conductive features, with each one of the conductive features capable of spreading an electrical signal between two of the sub-LEDs.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: July 2, 2013
    Assignee: Cree, Inc.
    Inventors: James Ibbetson, Sten Heikman
  • Patent number: 8436371
    Abstract: An optoelectronic device article comprises a substrate containing at least one electrically conductive microvia, at least one emitter diode and at least one ESD diode, optionally formed in situ, disposed in or on the substrate, and an electrically conductive path between the foregoing elements. A reflector cavity may be defined in the substrate for receiving the emitter diode(s), with retention elements on the substrate used to retain a lens material. High flux density and high emitter diode spatial density may be attained. Thermal sensors, radiation sensors, and integral heat spreaders comprising one or more protruding fins may be integrated into the article.
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: May 7, 2013
    Assignee: Cree, Inc.
    Inventors: Nicholas W. Medendorp, Jr., James Ibbetson
  • Patent number: 8426881
    Abstract: A light emitting diode includes a diode region having a gallium nitride based n-type layer, an active region and a gallium nitride based p-type layer. A first reflector layer is provided on the gallium nitride based p-type layer, and a second reflector layer is provided on the gallium nitride based n-type layer. Bonding layers, a mounting support, a wire bond and/or transparent oxide layers also may be provided.
    Type: Grant
    Filed: January 27, 2009
    Date of Patent: April 23, 2013
    Assignee: Cree, Inc.
    Inventors: David B. Slater, Jr., Robert C. Glass, Charles M. Swoboda, Bernd Keller, James Ibbetson, Brian Thibeault, Eric J. Tarsa
  • Publication number: 20130082291
    Abstract: A light emitting diode that when encapsulated within an overmolded hemispherical lens has a packaging factor less than 1.2.
    Type: Application
    Filed: October 4, 2011
    Publication date: April 4, 2013
    Inventors: James Ibbetson, David Todd Emerson
  • Patent number: 8410679
    Abstract: An LED includes a chip having a light emitting surface, and a coating of phosphor-containing material on the light emitting surface. Phosphor particles are arranged in a densely packed layer within the coating at the light emitting surface, and such that the light emitting surface is in contacting relationship with the phosphor particles.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: April 2, 2013
    Assignee: Cree, Inc.
    Inventors: James Ibbetson, Peter S. Andrews
  • Publication number: 20130049021
    Abstract: Methods for fabricating semiconductor devices such as LED chips with emission wavelength correction and devices fabricated using these methods. Different embodiments include sequential coating methods that provide two or more coatings or layers of conversion material over LEDs, which can be done at the wafer level. The methods are particularly applicable to fabricating LED chips that emit a warm white light, which typically requires covering LEDs with one or more wavelength conversion materials such as phosphors. In one embodiment, a base wavelength conversion material is applied to the semiconductor devices. A portion of the base conversion material is removed. At least two different tuning wavelength conversion materials are also applied to the semiconductor devices, either before or after the application of the base conversion material.
    Type: Application
    Filed: August 26, 2011
    Publication date: February 28, 2013
    Inventors: JAMES IBBETSON, Bernd Keller, Ronan Letoquin, Matthew Donofrio, Michael Bergmann
  • Patent number: 8368100
    Abstract: Light emitting diodes include a diode region having first and second opposing faces that include therein an n-type layer and a p-type layer, an anode contact that ohmically contacts the p-type layer and extends on the first face, and a cathode contact that ohmically contacts the n-type layer and also extends on the first face. The anode contact and/or the cathode contact may further provide a hybrid reflective structure on the first face that is configured to reflect substantially all light that emerges from the first face back into the first face. Related fabrication methods are also described.
    Type: Grant
    Filed: May 11, 2009
    Date of Patent: February 5, 2013
    Assignee: Cree, Inc.
    Inventors: Matthew Donofrio, James Ibbetson, Zhimin Jamie Yao
  • Publication number: 20130020929
    Abstract: A green-shifted red solid state lighting device includes at least one green solid state light emitter arranged to stimulate emissions from at least one red lumiphor, arranged in combination with at least one blue solid state light emitter. Such device may be devoid of any yellow lumiphor arranged to be stimulated by a blue solid state light emitter. A green shifted red plus blue (GSR+B) lighting device exhibits reduced Stokes Shift losses as compared to a blue shifted yellow plus red (BSY+R) lighting device, with comparable color rendering performance and similar efficiency, enhanced color stability over a range of operating temperatures, and enhanced color rendering performance at higher correlated color temperatures. Additional solid state emitters and/or lumiphors may be provided.
    Type: Application
    Filed: April 6, 2012
    Publication date: January 24, 2013
    Applicant: CREE, INC.
    Inventors: Antony Paul van de Ven, Gerald H. Negley, Ronan P. LeToquin, Bernd P. Keller, James Ibbetson
  • Publication number: 20130003346
    Abstract: Solid state modules and fixtures comprising different combinations and arrangements of a light source, one or more wavelength conversion materials, thermally conductive connection adapters allowing dissipation of heat outside of the module, and a remote power supply unit. This arrangement allows for greater thermal efficiency and reliability while employing solid state lighting and providing emission patterns that are equivalent with ENERGY STAR® standards. Some embodiments additionally place compensation circuits, previously included with power supply units, on the optical element itself, remote from the power supply unit. Various embodiments of the invention may be used to address many of the difficulties associated with utilizing efficient solid state light sources such as LEDs in the fabrication of lamps or bulbs suitable for direct replacement of traditional incandescent bulbs or fixtures using bulbs.
    Type: Application
    Filed: June 28, 2012
    Publication date: January 3, 2013
    Inventors: RONAN LETOQUIN, PETER GUSCHL, JAMES IBBETSON, ERIC TARSA, TAO TONG, ZONGJIE YUAN, BERND KELLER
  • Patent number: 8329482
    Abstract: Methods and devices for light emitting diode (LED) chips are provided. In one embodiment of a method, a pre-formed capping wafer is provided, with the capping wafer comprising a conversion material. A wire-bond free LED wafer is fabricated comprising a plurality of LEDs. The capping wafer is bonded to the LED wafer using an adhesive. The LED chips are later singulated upon completion of all final fabrication steps. The capping wafer provides a robust mechanical support for the LED chips during fabrication, which improves the strength of the chips during fabrication. Additionally, the capping wafer may comprise an integrated conversion material, which simplifies the fabrication process. In one possible embodiment for an LED chip wafer, a submount wafer is provided, along with a plurality of LEDs flip-chip mounted on the submount wafer. Additionally, a capping wafer is bonded to the LEDs using an adhesive, and the capping wafer comprises a conversion material.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: December 11, 2012
    Assignee: Cree, Inc.
    Inventors: Zhimin Jamie Yao, James Ibbetson
  • Publication number: 20120298955
    Abstract: A semiconductor device is provided that includes a Group III nitride based superlattice and a Group III nitride based active region comprising at least one quantum well structure on the superlattice. The quantum well structure includes a well support layer comprising a Group III nitride, a quantum well layer comprising a Group III nitride on the well support layer and a cap layer comprising a Group III nitride on the quantum well layer. A Group III nitride based semiconductor device is also provided that includes a gallium nitride based superlattice having at least two periods of alternating layers of InXGa1-XN and InYGa1-YN, where 0?X<1 and 0?Y<1 and X is not equal to Y. The semiconductor device may be a light emitting diode with a Group III nitride based active region. The active region may be a multiple quantum well active region.
    Type: Application
    Filed: June 27, 2012
    Publication date: November 29, 2012
    Inventors: David Todd Emerson, James Ibbetson, Michael John Bergmann, Kathleen Marie Doverspike, Michael John O'Loughlin, Howard Dean Nordby, JR., Amber Christine Abare
  • Publication number: 20120280263
    Abstract: A high efficiency light emitting diode with a composite high reflectivity layer integral to said LED or package to improve emission efficiency. One embodiment of a light emitting diode (LED) chip comprises a LED and a composite high reflectivity layer integral to the LED to reflect light emitted from the active region. One embodiment of a LED package comprises a LED mounted on a substrate with an encapsulant over said LED and a composite high reflectivity layer arranged to reflect emitted light. The composite layer comprises a plurality of layers such that at least one of said plurality of layers has an index of refraction lower than the encapsulant and a reflective layer on a side of said plurality of layers opposite the LED. In some embodiments, conductive vias are included through the composite layer to allow an electrical signal to pass through the layer to the LED.
    Type: Application
    Filed: March 8, 2012
    Publication date: November 8, 2012
    Inventors: James Ibbetson, Ting Li, Bernd Keller
  • Patent number: 8288942
    Abstract: A white light emitting solid-state lamp is disclosed having an output of at least 75 lumens per watt at 20 milliamps drive current. The lamp includes a light emitting diode, an encapsulant, and a header. The diode includes a conductive silicon carbide substrate for electrical contact and a Group III nitride active portion on the silicon carbide substrate for generating desired frequency photons under the application of current across the diode. The header includes a reflective cup for supporting the diode and for providing electrical contact to the diode and to the active portion. The encapsulant includes a phosphor, present in at least portions of the encapsulant for generating responsive frequencies when the phosphor is excited by the frequencies emitted by the diode.
    Type: Grant
    Filed: September 15, 2005
    Date of Patent: October 16, 2012
    Assignee: Cree, Inc.
    Inventor: James Ibbetson
  • Publication number: 20120241781
    Abstract: An LED component comprising an array of LED chips mounted on a planar surface of a submount with the LED chips capable of emitting light in response to an electrical signal. The LED chips comprise respective groups emitting at different colors of light, with each of the groups interconnected in a series circuit. A lens is included over the LED chips. Other embodiments can comprise thermal spreading structures included integral to the submount and arranged to dissipate heat from the LED chips.
    Type: Application
    Filed: June 5, 2012
    Publication date: September 27, 2012
    Inventors: Thomas Yuan, Bernd Keller, James Ibbetson, Eric Tarsa, Gerald Negley
  • Publication number: 20120199843
    Abstract: Light emitting devices and methods are disclosed that provide improved light output. The devices have an LED mounted to a substrate, board or submount characterized by improved reflectivity, which reduces the absorption of LED light. This increases the amount of light that can emit from the LED device. The LED devices also exhibit improved emission characteristics by having a reflective coating on the submount that is substantially non-yellowing. One embodiment of a light emitting device according to the present invention comprises a submount having a circuit layer. A reflective coating is included between at least some of the elements of the circuit layer. A light emitting diode mounted to the circuit layer, the reflective coating being reflective to the light emitted by the light emitting diode. In some embodiments, the reflective coating comprises a carrier with scattering particles having a different index of refraction than said carrier material.
    Type: Application
    Filed: February 10, 2012
    Publication date: August 9, 2012
    Inventors: Sten HEIKMAN, Zhimin Jamie YAO, James IBBETSON, Fan ZHANG
  • Publication number: 20120193660
    Abstract: Horizontal light emitting diodes include anode and cathode contacts on the same face and a transparent substrate having an oblique sidewall. A conformal phosphor layer having an average equivalent particle diameter d50 of at least about 10 ?m is provided on the oblique sidewall. High aspect ratio substrates may be provided. The LED may be directly attached to a submount.
    Type: Application
    Filed: January 31, 2011
    Publication date: August 2, 2012
    Inventors: Matthew Donofrio, John Adam Edmond, James Ibbetson, David Todd Emerson, Michael John Bergmann, Kevin Haberern, Raymond Rosado, Jeffrey Carl Britt
  • Patent number: 8227268
    Abstract: A light emitting diode is provided having a Group III nitride based superlattice and a Group III nitride based active region on the superlattice. The active region has at least one quantum well stricture. The quantum well structure includes a first Group III nitride based barrier layer, a Group III nitride based quantum well layer on the first barrier layer and a second Group III nitride based barrier layer. A Group III nitride based semiconductor device and methods of fabricating a Group III nitride based semiconductor device having an active region comprising at least one quantum well structure are provided. The quantum well structure includes a well support layer comprising a Group III nitride, a quantum well layer comprising a Group III nitride on the well support layer and a cap layer comprising a Group III nitride on the quantum well layer.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: July 24, 2012
    Assignee: Cree, Inc.
    Inventors: David Todd Emerson, James Ibbetson, Michael John Bergmann, Kathleen Marie Doverspike, Michael John O'Loughlin, Howard Dean Nordby, Jr., Amber Christine Abare
  • Patent number: D673126
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: December 25, 2012
    Assignee: Cree, Inc.
    Inventors: Matthew Donofrio, James Ibbetson
  • Patent number: D689031
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: September 3, 2013
    Assignee: Cree, Inc.
    Inventors: Matthew Donofrio, James Ibbetson