Patents by Inventor John Heck

John Heck has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190041582
    Abstract: Embodiments may relate to a polymer optical coupler. The polymer optical coupler may include a first portion at least partially coupled to a face of a silicon waveguide. The polymer optical coupler may further include a second portion of the polymer optical coupler that is adjacent to the first portion and which may have a width that is less than a width of the second portion opposite the first portion. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: May 15, 2018
    Publication date: February 7, 2019
    Applicant: Intel Corporation
    Inventors: John Heck, Hari Mahalingam
  • Publication number: 20190044003
    Abstract: In embodiments, an optoelectronic apparatus may include a substrate with a first side and a second side opposite the first side; a photodetector disposed on the first side of the substrate, the photodetector to convert a light signal into an electrical signal; and a dielectric metasurface lens etched into the second side of the substrate, the dielectric metasurface lens to collect incident light and focus it through the substrate onto the photodetector.
    Type: Application
    Filed: March 21, 2018
    Publication date: February 7, 2019
    Inventors: John Heck, Harel Frish, Paul R. West
  • Patent number: 10076626
    Abstract: Various embodiments include systems and methods related to respiratory support delivered to infants using limited-leak cannulas. Various embodiments include a method of providing respiratory support to an infant. The method can include attaching a limited-leak cannula having prongs to an inspiratory port of a ventilator with connection tubing. The method can include selecting an operations mode on the ventilator that is specific for unidirectional flow limited-leak cannula use. The method can include initiating a calibration procedure with the prongs of the cannula freely exposed. The calibration procedure can include measuring the flow rate of gas through the connection tubing at a set pressure. The method can include setting monitoring parameters on the ventilator, initiating respiratory support by inserting the cannula prongs into the nares of the infant, and continuously monitoring the flow rate of gas through the limited-leak cannula. Other embodiments are also included herein.
    Type: Grant
    Filed: October 2, 2014
    Date of Patent: September 18, 2018
    Inventor: Louis John Heck
  • Publication number: 20180156661
    Abstract: An optical circuit includes solid state photonics. The optical circuit includes a phased array of solid state waveguides that perform beamsteering on an optical signal. The optical circuit includes a modulator to modulate a bit sequence onto the carrier frequency of the optical signal, and the beamsteered signal includes the modulated bit sequence. The optical circuit includes a photodetector to detect a reflection of the beamsteered optical signal. The optical circuit autocorrelates the reflection signal with the bit sequence to generate a processed signal.
    Type: Application
    Filed: October 17, 2017
    Publication date: June 7, 2018
    Inventors: Jonathan K. DOYLEND, David N. HUTCHISON, John HECK, Haisheng RONG, Daniel GRODENSKY, David ARBEL, Israel PETRONIUS
  • Publication number: 20180059446
    Abstract: Apparatuses, methods and storage medium associated with an optical iso-modulator are disclosed herein. In embodiments, an apparatus may include an optical waveguide formed on one or more layers, such as an isolation layer and a handling layer. A modulator driver may be coupled to a first side of the one or more layers. A magneto-optical (MO) die may be coupled to a second side of the one or more layers that is opposite the first side. Other embodiments may be disclosed and/or claimed.
    Type: Application
    Filed: August 29, 2016
    Publication date: March 1, 2018
    Inventors: Woosung Kim, John Heck, Haisheng Rong, Jeffrey B. Driscoll, Kimchau N. Nguyen
  • Patent number: 9897827
    Abstract: Embodiments herein relate to a photonic integrated circuit (PIC) with an on-chip optical isolator. The PIC may comprise a laser, a waveguide coupled with the laser, and a closed loop resonator coupled to the laser through the waveguide. A magneto-optical (MO) layer is over and in contact with the waveguide and the closed loop resonator. The closed loop resonator may comprise a first polarization rotator (PR) and a second PR. A light from the laser in transverse electric (TE) mode through the waveguide is rotated in the first PR to a light in transverse magnetic (TM) mode, and the light in TM mode is rotated in the second PR to light in TE mode. The isolator may further comprise a micro-heater over or along a side of the waveguide and separated from the closed loop resonator; and a feedback control loop connected to the closed loop resonator and the micro-heater.
    Type: Grant
    Filed: July 27, 2016
    Date of Patent: February 20, 2018
    Assignee: Intel Corporation
    Inventors: Woosung Kim, Haisheng Rong, John Heck
  • Publication number: 20180031873
    Abstract: Embodiments herein relate to a photonic integrated circuit (PIC) with an on-chip optical isolator. The PIC may comprise a laser, a waveguide coupled with the laser, and a closed loop resonator coupled to the laser through the waveguide. A magneto-optical (MO) layer is over and in contact with the waveguide and the closed loop resonator. The closed loop resonator may comprise a first polarization rotator (PR) and a second PR. A light from the laser in transverse electric (TE) mode through the waveguide is rotated in the first PR to a light in transverse magnetic (TM) mode, and the light in TM mode is rotated in the second PR to light in TE mode. The isolator may further comprise a micro-heater over or along a side of the waveguide and separated from the closed loop resonator; and a feedback control loop connected to the closed loop resonator and the micro-heater.
    Type: Application
    Filed: July 27, 2016
    Publication date: February 1, 2018
    Inventors: Woosung Kim, Haisheng Rong, John Heck
  • Patent number: 9823118
    Abstract: An optical circuit includes solid state photonics. The optical circuit includes a phased array of solid state waveguides that perform beamsteering on an optical signal. The optical circuit includes a modulator to modulate a bit sequence onto the carrier frequency of the optical signal, and the beamsteered signal includes the modulated bit sequence. The optical circuit includes a photodetector to detect a reflection of the beamsteered optical signal. The optical circuit autocorrelates the reflection signal with the bit sequence to generate a processed signal.
    Type: Grant
    Filed: December 26, 2015
    Date of Patent: November 21, 2017
    Assignee: Intel Corporation
    Inventors: Jonathan K Doylend, David N Hutchison, John Heck, Haisheng Rong, Daniel Grodensky, David Arbel, Israel Petronius
  • Patent number: 9791641
    Abstract: Inverted 45° semiconductor mirrors as vertical optical couplers for PIC chips, particularly optical receivers and transmitters. An inverted 45° semiconductor mirror functions to couple light between a plane in the PIC chip defined by thin film layers and a direction normal to a top surface of the PIC chip where it may be generated or collected by an off-chip component, such as a wire terminal. In an exemplary embodiment, a (110) plane of a cubic crystalline semiconductor may provide a 45° facet inverted relative to a (100) surface of the semiconductor from which light is to be emitted. In further embodiments, a (110) plane may be exposed by undercutting a device layer of a semiconductor on insulator (SOI) substrate. Alternatively, a pre-etched substrate surface may be bonded to a handling wafer, thinned, and then utilized for PIC waveguide formation.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: October 17, 2017
    Assignee: Intel Corporation
    Inventors: John Heck, Haisheng Rong
  • Patent number: 9778042
    Abstract: Embodiments of the present disclosure are directed towards a micro-electromechanical system (MEMS) sensing apparatus, including a laser arrangement configured to generate a light beam, a first waveguide configured to receive and output the light beam, and a second waveguide aligned endface to endface with the first waveguide. The second waveguide may be configured to receive at least a portion of the light beam from the first waveguide via optical coupling through the aligned endfaces. Either the first or second waveguide may be configured to be moveable in response to an inertial change of the apparatus, wherein movement of the first or second waveguide causes a corresponding change in light intensity of the portion of the light beam, the change in light intensity indicating a measure of the inertial change. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: December 13, 2013
    Date of Patent: October 3, 2017
    Assignee: Intel Corporation
    Inventors: Suraj Bramhavar, David N. Hutchison, John Heck
  • Publication number: 20170269395
    Abstract: Embodiments herein relate to photonic integrated circuits with an on-chip optical isolator. A photonic transmitter chip may include a laser and an on-chip isolator optically coupled with the laser that includes an optical waveguide having a section coupled with a magneto-optic liquid phase epitaxy grown garnet film. In some embodiments, a cladding may be coupled with the garnet film, the on-chip isolator may be arranged in a Mach-Zehnder interferometer configuration, the waveguide may include one or more polarization rotators, and/or the garnet film may be formed of a material from a rare-earth garnet family. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: March 15, 2016
    Publication date: September 21, 2017
    Inventors: John Heck, David N. Hutchison, Jie Sun, Haisheng Rong, Woosung Kim
  • Publication number: 20170184450
    Abstract: An optical circuit includes solid state photonics. The optical circuit includes a phased array of solid state waveguides that perform beamsteering on an optical signal. The optical circuit includes a modulator to modulate a bit sequence onto the carrier frequency of the optical signal, and the beamsteered signal includes the modulated bit sequence. The optical circuit includes a photodetector to detect a reflection of the beamsteered optical signal. The optical circuit autocorrelates the reflection signal with the bit sequence to generate a processed signal.
    Type: Application
    Filed: December 26, 2015
    Publication date: June 29, 2017
    Inventors: Jonathan K. Doylend, David N. Hutchison, John Heck, Haisheng Rong, Daniel Grodensky, David Arbel, Israel Petronius
  • Patent number: 9575341
    Abstract: A solid state photonics circuit having a liquid crystal (LC) layer for beam steering. The LC layer can provide tuning of an array of waveguides by controlling the application of voltage to the liquid crystal. The application of voltage to the liquid crystal can be controlled to perform beam steering with the light signal based on different tuning in each of the waveguides of the array. The waveguides are disposed in a substrate having an oxide or other insulating layer with an opening. The opening in the oxide layer exposes a portion of a path of the array of waveguides. The waveguides are exposed to the liquid crystal through the oxide opening, which allows the voltage changes to the liquid crystal to tune the optical signals in the waveguides.
    Type: Grant
    Filed: June 28, 2014
    Date of Patent: February 21, 2017
    Assignee: Intel Corporation
    Inventors: John Heck, Jonathan K Doylend, David N Hutchison, Haisheng Rong, Jacob B Sendowski
  • Patent number: 9500827
    Abstract: Techniques and mechanisms for a monolithic photonic integrated circuit (PIC) to provide spectrometry functionality. In an embodiment, the PIC comprises a photonic device, a first waveguide and a second waveguide, wherein one of the first waveguide and the second waveguide includes a released portion which is free to move relative to a substrate of the PIC. During a metering cycle to evaluate a material under test, control logic operates an actuator to successively configure a plurality of positions of the released portion relative to the photonic device. In another embodiment, light from the first waveguide is variously diffracted by a grating of the photonic device during the metering cycle, where portions of the light are directed into the second waveguide. Different wavelengths of light diffracted into the second waveguide may be successively detected, for different positions of the released portion, to determine spectrometric measurements over a range of wavelength.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: November 22, 2016
    Assignee: Intel Corporation
    Inventors: David N. Hutchison, Kyu Hyun Kim, Haisheng Rong, John Heck, Shengbo Xu
  • Patent number: 9482535
    Abstract: A system having an optomechanical gyroscope device. An optomechanical disk acts as an optical ring resonator and a mechanical disk resonator. A drive laser generates an optical drive signal. A drive channel acts as a waveguide for the optical drive signal and includes drive electrodes in a first proximity with respect to the optomechanical disk. The drive electrodes to excite the ring by evanescent coupling. A drive photodetector is configured to receive an output optical signal from the drive channel. A sense laser generates a optical sense signal. A sense channel acts as a waveguide for the optical sense signal and includes sense electrodes in a second proximity with respect to the optomechanical disk. A sense photodetector is configured to receive an output optical signal from the sense channel.
    Type: Grant
    Filed: December 23, 2011
    Date of Patent: November 1, 2016
    Assignee: Intel Corporation
    Inventors: John Heck, Haisheng Rong, Richard Jones
  • Publication number: 20160266331
    Abstract: A portion of an optical waveguide extending laterally within a photonic integrated circuit (PIC) chip is at least partially freed from the substrate to allow physical displacement of a released waveguide end relative to the substrate and relative to an adjacent photonic device also fabricated in the substrate. The released waveguide end may be displaced to modulate interaction between the photonic device and an optical mode propagated by the waveguide. In embodiments where the photonic device is an optical coupler, employing for example an Echelle grating or arrayed waveguide grating (AWG), mode propagation through the coupler may be modulated via physical displacement of the released waveguide end. In one such embodiment, thermal sensitivity of an integrated optical wavelength division multiplexer (WDM) is reduced by displacing the released waveguide end relative to the coupler in a manner that counters a temperature dependence of the optical coupler.
    Type: Application
    Filed: December 3, 2013
    Publication date: September 15, 2016
    Applicant: Intel Corporation
    Inventors: David N. HUTCHISON, Haisheng RONG, John HECK
  • Publication number: 20160195397
    Abstract: Embodiments of the present disclosure are directed towards a micro-electromechanical system (MEMS) sensing apparatus, including a laser arrangement configured to generate a light beam, a first waveguide configured to receive and output the light beam, and a second waveguide aligned endface to endface with the first waveguide. The second waveguide may be configured to receive at least a portion of the light beam from the first waveguide via optical coupling through the aligned endfaces. Either the first or second waveguide may be configured to be moveable in response to an inertial change of the apparatus, wherein movement of the first or second waveguide causes a corresponding change in light intensity of the portion of the light beam, the change in light intensity indicating a measure of the inertial change. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: December 13, 2013
    Publication date: July 7, 2016
    Inventors: Suraj Bramhavar, David N. Hutchison, John Heck
  • Patent number: 9360601
    Abstract: Methods of forming microelectronic structures are described. Embodiments of those methods may include forming a photomask on a (110) silicon wafer substrate, wherein the photomask comprises a periodic array of parallelogram openings, and then performing a timed wet etch on the (110) silicon wafer substrate to form a diffraction grating structure that is etched into the (110) silicon wafer substrate.
    Type: Grant
    Filed: March 2, 2015
    Date of Patent: June 7, 2016
    Assignee: Intel Corporation
    Inventors: Yun-Chung Na, John Heck, Haisheng Rong
  • Publication number: 20160139350
    Abstract: Inverted 45° semiconductor mirrors as vertical optical couplers for PIC chips, particularly optical receivers and transmitters. An inverted 45° semiconductor mirror functions to couple light between a plane in the PIC chip defined by thin film layers and a direction normal to a top surface of the PIC chip where it may be generated or collected by an off-chip component, such as a wire terminal. In an exemplary embodiment, a (110) plane of a cubic crystalline semiconductor may provide a 45° facet inverted relative to a (100) surface of the semiconductor from which light is to be emitted. In further embodiments, a (110) plane may be exposed by undercutting a device layer of a semiconductor on insulator (SOI) substrate. Alternatively, a pre-etched substrate surface may be bonded to a handling wafer, thinned, and then utilized for PIC waveguide formation.
    Type: Application
    Filed: October 15, 2015
    Publication date: May 19, 2016
    Inventors: John HECK, Haisheng RONG
  • Patent number: 9341644
    Abstract: Embodiments of the present disclosure are directed towards a micro-electromechanical system (MEMS) sensing device, including a laser arrangement configured to generate a light beam, a first waveguide configured to receive and output a first portion of the light beam, and a second waveguide having a section that is evanescently coupled to the first waveguide and configured to receive and output a second portion of the light beam. The section of the second waveguide is configured to be movable substantially parallel to the first waveguide, wherein a movement of the section of the second waveguide may be caused by an inertial change applied to the sensing device. The movement of the section may cause a detectable change in light intensity between the first and second portions of the light beam. Based on the detected change, the inertial change may be determined. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: December 13, 2013
    Date of Patent: May 17, 2016
    Assignee: Intel Corporation
    Inventors: David N. Hutchison, John Heck