Patents by Inventor John J. Ellis-Monaghan

John J. Ellis-Monaghan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140339607
    Abstract: A semiconductor fabrication is described, wherein a MOS device and a MEMS device is fabricated simultaneously in the BEOL process. A silicon layer is deposited and etched to form a silicon film for a MOS device and a lower silicon sacrificial film for a MEMS device. A conductive layer is deposited atop the silicon layer and etched to form a metal gate and a first upper electrode. A dielectric layer is deposited atop the conductive layer and vias are formed in the dielectric layer. Another conductive layer is deposited atop the dielectric layer and etched to form a second upper electrode and three metal electrodes for the MOS device. Another silicon layer is deposited atop the other conductive layer and etched to form an upper silicon sacrificial film for the MEMS device. The upper and lower silicon sacrificial films are then removed via venting holes.
    Type: Application
    Filed: August 5, 2014
    Publication date: November 20, 2014
    Inventors: John J. Ellis-Monaghan, Michael J. Hauser, Zhong-Xiang He, Junjun Li, Xuefeng Liu, Anthony K. Stamper
  • Publication number: 20140340548
    Abstract: A reference pixel sensor cell (e.g., global shutter) with hold node for leakage cancellation, methods of manufacture and design structure is provided. A pixel array includes one or more reference pixel sensor cells dispersed locally throughout active light sensing regions. The one or more reference pixel sensor cells provides a reference signal used to correct for photon generated leakage signals which vary by locality within the active light sensing regions.
    Type: Application
    Filed: August 1, 2014
    Publication date: November 20, 2014
    Inventors: James W. ADKISSON, John J. ELLIS-MONAGHAN, Richard J. RASSEL
  • Patent number: 8890557
    Abstract: A method of testing a semiconductor wafer and a related structure. In various embodiments, a method includes: placing a probe on a first chip on the semiconductor wafer; testing a scribe line automatic built-in self-test (ABIST) for the first chip to search for a fault; progressively testing a subsequent scribe line ABIST for a subsequent chip on the semiconductor wafer in response to determining the ABIST for the first chip does not indicate the fault; moving the probe point to the subsequent chip and retesting the subsequent scribe line ABIST in response to determining the ABIST for the subsequent chip indicates a fault; and testing a further subsequent scribe line ABIST for a further subsequent chip on the semiconductor wafer in response to determining the retesting of the subsequent scribiline ABIST does not indicate a fault in the subsequent scribe line ABIST.
    Type: Grant
    Filed: April 10, 2012
    Date of Patent: November 18, 2014
    Assignee: International Business Machines Corporation
    Inventors: Yoba Amoah, John J. Ellis-Monaghan, Roger C. Kuo, Molly J. Leitch, Zhihong Zhang
  • Publication number: 20140321801
    Abstract: An optical waveguide structure may include a dielectric layer having a top surface, an optical waveguide structure, and an optical coupler embedded within the dielectric layer. The optical coupler may have both a substantially vertical portion that couples to the top surface of the dielectric layer and a substantially horizontal portion that couples to the optical waveguide structure. The substantially vertical portion and the substantially horizontal portion are separated by a curved portion.
    Type: Application
    Filed: April 29, 2013
    Publication date: October 30, 2014
    Applicant: International Business Machnes Corporation
    Inventors: John J. Ellis-Monaghan, Jeffrey P. Gambino, Mark D. Jaffe, Kirk D. Peterson, Jed H. Rankin
  • Publication number: 20140321802
    Abstract: An optical waveguide structure may include an optical waveguide structure located within a semiconductor structure and an optical coupler. The optical coupler may include a metallic structure located within an electrical interconnection region of the semiconductor structure, whereby the metallic structure extends downward in a substantially curved shape from a top surface of the electrical interconnection region and couples to the optical waveguide structure. The optical coupler may further include an optical signal guiding region bounded within the metallic structure, whereby the optical coupler receives an optical signal from the top surface and couples the optical signal to the optical waveguide structure such that the optical signal propagation is substantially vertical at the top surface and substantially horizontal at the optical waveguide structure.
    Type: Application
    Filed: April 29, 2013
    Publication date: October 30, 2014
    Applicant: International Business Machines Corporation
    Inventors: John J. Ellis-Monaghan, Jeffrey P. Gambino, Mark D. Jaffe, Kirk D. Peterson, Jed H. Rankin
  • Patent number: 8871549
    Abstract: Device structures, fabrication methods, and design structures for a biological and chemical sensor used to detect a property of a substance. The device structure includes a drain and a source of a field effect transistor formed at a frontside of a substrate. A sensing layer is formed at a backside of the substrate. The sensing layer is configured to receive the substance.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: October 28, 2014
    Assignee: International Business Machines Corporation
    Inventors: John J. Ellis-Monaghan, Jeffrey P. Gambino, Derrick Liu
  • Patent number: 8835029
    Abstract: A solid-state battery structure having a plurality of battery cells formed in a substrate, method of manufacturing the same and design structure thereof are provided. The battery structure includes a patterned cathode electrode layer formed upon the substrate and structured to form a plurality of sub-arrays of the battery cells. The battery structure further includes a plurality of fuse wires structured to interconnect at least two adjacent sub-arrays. At least one of the plurality of fuse wires is structured to be blown to disconnect an interconnection having a defective sub-array. Advantageously, the plurality of fuse wires is an integral part of the battery structure.
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: September 16, 2014
    Assignee: International Business Machines Corporation
    Inventors: John J. Ellis-Monaghan, Jeffrey P. Gambino, Kirk D. Peterson, Jed H. Rankin
  • Patent number: 8836835
    Abstract: A reference pixel sensor cell (e.g., global shutter) with hold node for leakage cancellation, methods of manufacture and design structure is provided. A pixel array includes one or more reference pixel sensor cells dispersed locally throughout active light sensing regions. The one or more reference pixel sensor cells provides a reference signal used to correct for photon generated leakage signals which vary by locality within the active light sensing regions.
    Type: Grant
    Filed: October 4, 2010
    Date of Patent: September 16, 2014
    Assignee: International Business Machines Corporation
    Inventors: James W. Adkisson, John J. Ellis-Monaghan, Richard J. Rassel
  • Patent number: 8815671
    Abstract: Disclosed herein are various methods and structures using contacts to create differential stresses on devices in an integrated circuit (IC) chip. An IC chip is disclosed having a p-type field effect transistor (PFET) and an n-type field effect transistor (NFET). One embodiment of this invention includes creating this differential stress by varying the deposition conditions for forming PFET and NFET contacts, for example, the temperature at which the fill materials are deposited, and the rate at which the fill materials are deposited. In another embodiment, the differential stress is created by filling the contacts with differing materials that will impart differential stress due to differing coefficient of thermal expansions. In another embodiment, the differential stress is created by including a silicide layer within the NFET contacts and/or the PFET contacts.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: August 26, 2014
    Assignee: International Business Machines Corporation
    Inventors: John J. Ellis-Monaghan, Jeffrey P. Gambino, Kirk D. Peterson, Jed H. Rankin, Robert R. Robison
  • Patent number: 8809155
    Abstract: Device structures, design structures, and fabrication methods for a varactor. The device structure includes a first electrode formed on a dielectric layer, and a semiconductor body formed on the first electrode. The semiconductor body is comprised of a silicon-containing semiconductor material in an amorphous state or a polycrystalline state. The device structure further includes an electrode insulator formed on the semiconductor body and a second electrode formed on the electrode insulator.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: August 19, 2014
    Assignee: International Business Machines Corporation
    Inventors: John J. Ellis-Monaghan, Michael J. Hauser, Zhong-Xiang He, Xuefeng Liu, Richard A. Phelps, Robert M. Rassel, Anthony K. Stamper
  • Patent number: 8809998
    Abstract: An Integrated Circuit (IC) and a method of making the same. In one embodiment, the IC includes: a substrate; a first set of trenches formed in a first surface of the substrate; a second set of trenches formed in a second surface of the substrate; and at least one through silicon via connecting the first set of trenches and the second set of trenches.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: August 19, 2014
    Assignee: International Business Machines Corporation
    Inventors: Renata A. Camillo-Castillo, John J. Ellis-Monaghan, Robert M. Rassel, Daniel S. Vanslette
  • Patent number: 8791712
    Abstract: A test system for testing a multilayer 3-dimensional integrated circuit (IC), where two separate layers of IC circuits are temporarily connected in order to achieve functionality, includes a chip under test with a first portion of the 3-dimensional IC, and a test probe chip with a second portion of the 3-dimensional IC and micro-electrical-mechanical system (MEMS) switches that selectively complete functional circuits between the first portion of the 3-dimensional IC in a first IC layer to circuits within the second portion of the 3-dimensional IC in a second IC layer. The MEMS switches include tungsten (W) cone contacts, which make the selective electrical contacts between circuits of the chip under test and the test probe chip and which are formed using a template of graded borophosphosilicate glass (BPSG).
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: July 29, 2014
    Assignee: International Business Machines Corporation
    Inventors: John J. Ellis-Monaghan, Jeffrey P. Gambino, Kirk D. Peterson, Jed H. Rankin
  • Patent number: 8780436
    Abstract: Direct view color displays and design structures of direct view color displays. The direct view displays include micromirrors having un-tilted and tilted states and multiple color filters or color reflectors.
    Type: Grant
    Filed: January 4, 2012
    Date of Patent: July 15, 2014
    Assignee: International Business Machines Corporation
    Inventors: John J. Ellis-Monaghan, Jeffrey P. Gambino, Kirk D. Peterson, Jed H. Rankin
  • Publication number: 20140183753
    Abstract: A semiconductor fabrication is described, wherein a MOS device and a MEMS device is fabricated simultaneously in the BEOL process. A silicon layer is deposited and etched to form a silicon film for a MOS device and a lower silicon sacrificial film for a MEMS device. A conductive layer is deposited atop the silicon layer and etched to form a metal gate and a first upper electrode. A dielectric layer is deposited atop the conductive layer and vias are formed in the dielectric layer. Another conductive layer is deposited atop the dielectric layer and etched to form a second upper electrode and three metal electrodes for the MOS device. Another silicon layer is deposited atop the other conductive layer and etched to form an upper silicon sacrificial film for the MEMS device. The upper and lower silicon sacrificial films are then removed via venting holes.
    Type: Application
    Filed: January 3, 2013
    Publication date: July 3, 2014
    Applicant: International Business Machines Corporation
    Inventors: John J. Ellis-Monaghan, Michael J. Hauser, Zhong-Xiang He, Junjun Li, Xuefeng Liu, Anthony K. Stamper
  • Patent number: 8742560
    Abstract: Optical structures having an array of protuberances between two layers having different refractive indices are provided. The array of protuberances has vertical and lateral dimensions less than the wavelength range of lights detectable by a photodiode of a CMOS image sensor. The array of protuberances provides high transmission of light with little reflection. The array of protuberances may be provided over a photodiode, in a back-end-of-line interconnect structure, over a lens for a photodiode, on a backside of a photodiode, or on a window of a chip package.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: June 3, 2014
    Assignee: International Business Machines Corporation
    Inventors: James W. Adkisson, John J. Ellis-Monaghan, Jeffrey P. Gambino, Charles F. Musante
  • Patent number: 8743247
    Abstract: A method of forming a CMOS active pixel sensor (APS) cell structure having at least one transfer gate device and method of operation. A first transfer gate device comprises a diodic or split transfer gate conductor structure having a first doped region of first conductivity type material and a second doped region of a second conductivity type material. A photosensing device is formed adjacent the first doped region for collecting charge carriers in response to light incident thereto, and, a diffusion region of a second conductivity type material is formed at or below the substrate surface adjacent the second doped region of the transfer gate device for receiving charges transferred from the photosensing device while preventing spillback of charges to the photosensing device upon timed voltage bias to the diodic or split transfer gate conductor structure.
    Type: Grant
    Filed: January 14, 2008
    Date of Patent: June 3, 2014
    Assignee: International Business Machines Corporation
    Inventors: James W. Adkisson, Andres Bryant, John J. Ellis-Monaghan
  • Publication number: 20140145747
    Abstract: A test circuit including a light activated test connection in a semiconductor device is provided. The light activated test connection is electrically conductive during a test of the semiconductor device and is electrically non-conductive after the test.
    Type: Application
    Filed: November 29, 2012
    Publication date: May 29, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Nathaniel R. CHADWICK, John B. DEFORGE, John J. ELLIS-MONAGHAN, Jeffrey P. GAMBINO, Ezra D. HALL, Marc D. KNOX, Kirk D. PETERSON
  • Patent number: 8716771
    Abstract: Optical structures having an array of protuberances between two layers having different refractive indices are provided. The array of protuberances has vertical and lateral dimensions less than the wavelength range of lights detectable by a photodiode of a CMOS image sensor. The array of protuberances provides high transmission of light with little reflection. The array of protuberances may be provided over a photodiode, in a back-end-of-line interconnect structure, over a lens for a photodiode, on a backside of a photodiode, or on a window of a chip package.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: May 6, 2014
    Assignee: International Business Machines Corporation
    Inventors: James W. Adkisson, John J. Ellis-Monaghan, Jeffrey P. Gambino, Charles F. Musante
  • Patent number: 8709903
    Abstract: Disclosed is semiconductor structure with an insulator layer on a semiconductor substrate and a device layer is on the insulator layer. The substrate is doped with a relatively low dose of a dopant having a given conductivity type such that it has a relatively high resistivity. Additionally, a portion of the semiconductor substrate immediately adjacent to the insulator layer can be doped with a slightly higher dose of the same dopant, a different dopant having the same conductivity type or a combination thereof. Optionally, micro-cavities are created within this same portion so as to balance out any increase in conductivity due to increased doping with a corresponding increase in resistivity. Increasing the dopant concentration at the semiconductor substrate-insulator layer interface raises the threshold voltage (Vt) of any resulting parasitic capacitors and, thereby reduces harmonic behavior. Also disclosed herein are embodiments of a method for forming such a semiconductor structure.
    Type: Grant
    Filed: September 5, 2013
    Date of Patent: April 29, 2014
    Assignee: International Business Machines Corporation
    Inventors: Alan B. Botula, John J. Ellis-Monaghan, Alvin J. Joseph, Max G. Levy, Richard A. Phelps, James A. Slinkman, Randy L. Wolf
  • Patent number: 8704325
    Abstract: CMOS pixel sensors with multiple pixel sizes and methods of manufacturing the CMOS pixel sensors with implant dose control are provided. The method includes forming a plurality of pixel sensors in a same substrate and forming a masking pattern over at least one of the plurality of pixel sensors that has a pixel size larger than a non-masked pixel sensor of the plurality of pixel sensors. The method further includes providing a single dosage implant to the plurality of pixel sensors. The at least one of the plurality of pixel sensors with the masking pattern receives a lower dosage than the non-masked pixel sensor.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: April 22, 2014
    Assignee: International Business Machines Corporation
    Inventors: John J. Ellis-Monaghan, Jeffery P. Gambino, Daniel N. Maynard, Richard J. Rassel