Patents by Inventor John Rozen

John Rozen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240090350
    Abstract: A grain-boundary self-aligned resistive memory structure is provided enabling the closely-packed formation of multiple, oxide-based, ReRAM elements in parallel, each with its own compliance resistor. The structure is capable of forming multiple filaments, one per element, with the aim of reducing the variability in the composite ReRAM cell.
    Type: Application
    Filed: September 9, 2022
    Publication date: March 14, 2024
    Inventors: Paul Michael Solomon, Takashi Ando, Eduard Albert Cartier, John Rozen
  • Publication number: 20240090352
    Abstract: To limit resistance variability across a resistive random-access memory (RRAM) call, the disclosure includes an RRAM cell with a resistance spreading layer within the RRAM cell between the top and bottom electrodes of the RRAM cell. The resistance spreading layer is in series with and has no impedance with a filament forming layer of the RRAM cell. The resistance spreading layer may be below the filament forming layer or the resistance spreading layer may be above the filament forming layer. The resistance spreading layer may further be in series with and has no impedance with the bottom electrode or the top electrode.
    Type: Application
    Filed: September 13, 2022
    Publication date: March 14, 2024
    Inventors: Paul Michael Solomon, Takashi Ando, John Rozen, Eduard Albert Cartier
  • Patent number: 11832534
    Abstract: Methods of forming variable-resistance devices include forming a variable-resistance layer between a first terminal and a second terminal from a material that varies in resistance based on an oxygen concentration. An electrolyte layer is formed over the variable-resistance layer from a material that is stable at room temperature and that conducts oxygen ions in accordance with an applied voltage. A conductive gate layer is formed over the electrolyte layer.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: November 28, 2023
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Teodor K Todorov, Douglas M. Bishop, Jianshi Tang, John Rozen
  • Patent number: 11770986
    Abstract: A resistive switching memory stack, comprised of a bottom electrode, an oxide layer located on the bottom electrode; and a top electrode located on the oxide layer. The top electrode is comprised of a first layer, an intermediate layer located directly on the first layer, and a top layer located on top of the intermediate layer. Wherein the intermediate layer is comprised of a doped carbide active layer.
    Type: Grant
    Filed: April 22, 2021
    Date of Patent: September 26, 2023
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: John Rozen, Marinus Hopstaken, Yohei Ogawa, Masanobu Hatanaka, Takashi Ando, Kazuhiro Honda
  • Patent number: 11646199
    Abstract: Embodiments of the present invention are directed to forming a sub-stoichiometric metal-oxide film using a modified atomic layer deposition (ALD) process. In a non-limiting embodiment of the invention, a first precursor and a second precursor are selected. The first precursor can include a metal and a first ligand. The second precursor can include the same metal and a second ligand. A substrate can be exposed to the first precursor during a first pulse of an ALD cycle. The substrate can be exposed to the second precursor during a second pulse of the ALD cycle. The second pulse can occur directly after the first pulse without an intervening thermal oxidant. The substrate can be exposed to the thermal oxidant during a third pulse of the ALD cycle.
    Type: Grant
    Filed: May 18, 2021
    Date of Patent: May 9, 2023
    Assignees: International Business Machines Corporation, ULVAC. Inc.
    Inventors: John Rozen, Martin Michael Frank, Yohei Ogawa
  • Patent number: 11586899
    Abstract: A method of fabricating a neuromorphic device includes forming a variable-resistance layer between a first terminal and a second terminal, the variable-resistance layer varies in resistance based on an oxygen concentration in the variable-resistance layer. The method further includes forming an electrolyte layer over the variable-resistance layer that is stable at room temperature and that conducts oxygen ions in accordance with an applied voltage. The method further includes forming a gate layer over the electrolyte layer to apply a voltage on the electrolyte layer and the variable-resistance layer, the gate layer formed using an oxygen scavenging material.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: February 21, 2023
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Teodor Krassimirov Todorov, Jianshi Tang, Douglas M. Bishop, John Rozen, Takashi Ando
  • Patent number: 11568927
    Abstract: An embodiment of the invention may include a memory structure. The memory structure may include a first terminal connected to a first contact. The memory structure may include a second terminal connected to a second contact and a third contact. The memory structure may include a multi-level nonvolatile electrochemical cell having a variable resistance channel and a programming gate. The memory structure may include the first contact and second contact connected to the variable resistance channel. The memory structure may include the third contact is connected to the programming gate. This may enable decoupled read-write operations of the device.
    Type: Grant
    Filed: March 30, 2021
    Date of Patent: January 31, 2023
    Assignee: International Business Machines Corporation
    Inventors: John Rozen, Seyoung Kim, Paul Michael Solomon
  • Patent number: 11569444
    Abstract: An embodiment of the invention may include a first electrode, a second electrode, and a multi-level nonvolatile electrochemical cell located between the first electrode and second electrode. The multi-level nonvolatile electrochemical cell may have a read path and a write path through the cell, where the read path and the write path are different.
    Type: Grant
    Filed: March 30, 2021
    Date of Patent: January 31, 2023
    Assignee: International Business Machines Corporation
    Inventor: John Rozen
  • Publication number: 20220344586
    Abstract: A resistive switching memory stack, comprised of a bottom electrode, an oxide layer located on the bottom electrode; and a top electrode located on the oxide layer. The top electrode is comprised of a first layer, an intermediate layer located directly on the first layer, and a top layer located on top of the intermediate layer. Wherein the intermediate layer is comprised of a doped carbide active layer.
    Type: Application
    Filed: April 22, 2021
    Publication date: October 27, 2022
    Inventors: John Rozen, Marinus Hopstaken, Yohei Ogawa, Masanobu Hatanaka, Takashi Ando, Kazuhiro Honda
  • Publication number: 20220328302
    Abstract: Embodiments of the present invention are directed to forming a ternary compound using a modified atomic layer deposition (ALD) process. In a non-limiting embodiment of the invention, a first precursor and a second precursor are selected. The first precursor includes a first metal and a first ligand. The second precursor includes a second metal and a second ligand. The second ligand is selected based on the first ligand to target a second metal uptake. A substrate is exposed to the first precursor during a first pulse of an ALD cycle and the substrate is exposed to the second precursor during a second pulse of the ALD cycle, the second pulse occurring after the first pulse. The substrate is exposed to a third precursor (e.g., an oxidant) during a third pulse of the ALD cycle. The ternary compound can include a ternary oxide film.
    Type: Application
    Filed: June 28, 2022
    Publication date: October 13, 2022
    Inventors: Martin Michael Frank, John Rozen, Yohei Ogawa
  • Publication number: 20220319588
    Abstract: An embodiment of the invention may include a memory structure. The memory structure may include a first terminal connected to a first contact. The memory structure may include a second terminal connected to a second contact and a third contact. The memory structure may include a multi-level nonvolatile electrochemical cell having a variable resistance channel and a programming gate. The memory structure may include the first contact and second contact connected to the variable resistance channel. The memory structure may include the third contact is connected to the programming gate. This may enable decoupled read-write operations of the device.
    Type: Application
    Filed: March 30, 2021
    Publication date: October 6, 2022
    Inventors: John Rozen, Seyoung Kim, Paul Michael Solomon
  • Publication number: 20220320426
    Abstract: An embodiment of the invention may include a first electrode, a second electrode, and a multi-level nonvolatile electrochemical cell located between the first electrode and second electrode. The multi-level nonvolatile electrochemical cell may have a read path and a write path through the cell, where the read path and the write path are different.
    Type: Application
    Filed: March 30, 2021
    Publication date: October 6, 2022
    Inventor: John Rozen
  • Patent number: 11462398
    Abstract: Embodiments of the present invention are directed to forming a ternary compound using a modified atomic layer deposition (ALD) process. In a non-limiting embodiment of the invention, a first precursor and a second precursor are selected. The first precursor includes a first metal and a first ligand. The second precursor includes a second metal and a second ligand. The second ligand is selected based on the first ligand to target a second metal uptake. A substrate is exposed to the first precursor during a first pulse of an ALD cycle and the substrate is exposed to the second precursor during a second pulse of the ALD cycle, the second pulse occurring after the first pulse. The substrate is exposed to a third precursor (e.g., an oxidant) during a third pulse of the ALD cycle. The ternary compound can include a ternary oxide film.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: October 4, 2022
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, ULVAC, INC
    Inventors: Martin Michael Frank, John Rozen, Yohei Ogawa
  • Patent number: 11455521
    Abstract: A neuromorphic semiconductor device includes a copper-based intercalation channel disposed on an insulative layer, a source contact and a drain contact of a substrate. A copper-based electrolyte layer is disposed on the copper-based intercalation channel and a copper-based gate electrode is disposed on the copper-based electrolyte layer.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: September 27, 2022
    Assignee: International Business Machines Corporation
    Inventors: Teodor K. Todorov, Douglas M. Bishop, Jianshi Tang, John Rozen
  • Patent number: 11362274
    Abstract: A laterally switching cell structure including a metal-insulator-metal stack includes an active metal oxide layer including one or more sub-stoichiometric regions. The metal oxide layer includes one or more metal-oxides deposited conformally using a mixed precursor atomic layer deposition process. A graded oxygen profile in the metal oxide layer(s) of the stack including a mirrored impurity density may be formed wherein the sub-stoichiometric region(s) include a relatively high density of impurities obtained as reaction by-products. Arrays of cell structures can be formed with no requirement for a thick active electrode, allowing for more space for a metal fill and optional selector, thereby reducing access resistance.
    Type: Grant
    Filed: January 10, 2020
    Date of Patent: June 14, 2022
    Assignees: International Business Machines Corporation, ULVAC, INC.
    Inventors: John Rozen, Takashi Ando, Martin M. Frank, Yohei Ogawa
  • Patent number: 11195929
    Abstract: A gate structure for effective work function adjustments of semiconductor devices that includes a gate dielectric on a channel region of a semiconductor device; a first metal nitride in direct contact with the gate dielectric; a conformal carbide of Aluminum material layer having an aluminum content greater than 30 atomic wt. %; and a second metal nitride layer in direct contact with the conformal aluminum (Al) and carbon (C) containing material layer. The conformal carbide of aluminum (Al) layer includes aluminum carbide, or Al4C3, yielding an aluminum (Al) content up to 57 atomic % (at. %) and work function setting from 3.9 eV to 5.0 eV at thicknesses below 25 ?. Such structures can present metal gate length scaling and resistance benefit below 25 nm compared to state of the art work function electrodes.
    Type: Grant
    Filed: October 30, 2019
    Date of Patent: December 7, 2021
    Assignees: International Business Machines Corporation, ULVAC, INC.
    Inventors: Takashi Ando, Ruqiang Bao, Masanobu Hatanaka, Vijay Narayanan, Yohei Ogawa, John Rozen
  • Patent number: 11189482
    Abstract: A thin film formation method includes setting a film formation subject to 200° C. or higher. A first step includes changing a first state, in which a film formation material and a carrier gas are supplied so that the film formation material collects on the film formation subject, to a second state, in which the film formation material is omitted. A second step includes changing a third state, in which a hydrogen gas and a carrier gas are supplied to reduce the film formation material, to a fourth state, in which the hydrogen gas is omitted. The film formation material is any one of Al(CxH2x+1)3, Al(CxH2x+1)2H, and Al(CxH2x+1)2Cl. The first step and the second step are alternately repeated to form an aluminum carbide film on the film formation subject such that a content rate of aluminum atoms is 20 atomic percent or greater.
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: November 30, 2021
    Assignees: ULVAC, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Masanobu Hatanaka, Yohei Ogawa, Keon-chang Lee, Nobuyuki Kato, Takakazu Yamada, John Rozen
  • Patent number: 11152214
    Abstract: A method of forming a semiconductor device that includes forming a metal oxide material on a III-V semiconductor channel region or a germanium containing channel region; and treating the metal oxide material with an oxidation process. The method may further include depositing of a hafnium containing oxide on the metal oxide material after the oxidation process, and forming a gate conductor atop the hafnium containing oxide. The source and drain regions are on present on opposing sides of the gate structure including the metal oxide material, the hafnium containing oxide and the gate conductor.
    Type: Grant
    Filed: April 20, 2016
    Date of Patent: October 19, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Takashi Ando, John Bruley, Eduard A. Cartier, Martin M. Frank, Vijay Narayanan, John Rozen
  • Patent number: 11121259
    Abstract: A neuromorphic device includes a metal-oxide channel layer that has a variable-resistance between a first terminal and a second terminal. The neuromorphic device further includes a metal-oxide charge transfer layer over the metal-oxide channel layer that causes the metal-oxide channel layer to vary in resistance based on charge exchange between the metal-oxide charge transfer layer and the metal-oxide channel layer in accordance with an applied input signal. The neuromorphic device further includes a third terminal that applies the signal to the metal-oxide charge transfer layer and the metal-oxide channel layer.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: September 14, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: John Rozen, Takashi Ando, Teodor Krassimirov Todorov, Jianshi Tang
  • Publication number: 20210272796
    Abstract: Embodiments of the present invention are directed to forming a sub-stoichiometric metal-oxide film using a modified atomic layer deposition (ALD) process. In a non-limiting embodiment of the invention, a first precursor and a second precursor are selected. The first precursor can include a metal and a first ligand. The second precursor can include the same metal and a second ligand. A substrate can be exposed to the first precursor during a first pulse of an ALD cycle. The substrate can be exposed to the second precursor during a second pulse of the ALD cycle. The second pulse can occur directly after the first pulse without an intervening thermal oxidant. The substrate can be exposed to the thermal oxidant during a third pulse of the ALD cycle.
    Type: Application
    Filed: May 18, 2021
    Publication date: September 2, 2021
    Inventors: John Rozen, Martin Michael Frank, Yohei Ogawa