Patents by Inventor John Rozen

John Rozen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11081343
    Abstract: Embodiments of the present invention are directed to forming a sub-stoichiometric metal-oxide film using a modified atomic layer deposition (ALD) process. In a non-limiting embodiment of the invention, a first precursor and a second precursor are selected. The first precursor can include a metal and a first ligand. The second precursor can include the same metal and a second ligand. A substrate can be exposed to the first precursor during a first pulse of an ALD cycle. The substrate can be exposed to the second precursor during a second pulse of the ALD cycle. The second pulse can occur directly after the first pulse without an intervening thermal oxidant. The substrate can be exposed to the thermal oxidant during a third pulse of the ALD cycle.
    Type: Grant
    Filed: July 19, 2019
    Date of Patent: August 3, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: John Rozen, Martin Michael Frank, Yohei Ogawa
  • Publication number: 20210217953
    Abstract: A laterally switching cell structure including a metal-insulator-metal stack includes an active metal oxide layer including one or more sub-stoichiometric regions. The metal oxide layer includes one or more metal-oxides deposited conformally using a mixed precursor atomic layer deposition process. A graded oxygen profile in the metal oxide layer(s) of the stack including a mirrored impurity density may be formed wherein the sub-stoichiometric region(s) include a relatively high density of impurities obtained as reaction by-products. Arrays of cell structures can be formed with no requirement for a thick active electrode, allowing for more space for a metal fill and optional selector, thereby reducing access resistance.
    Type: Application
    Filed: January 10, 2020
    Publication date: July 15, 2021
    Inventors: John Rozen, Takashi Ando, Martin M. Frank, Yohei Ogawa
  • Publication number: 20210151669
    Abstract: Methods of forming variable-resistance devices include forming a variable-resistance layer between a first terminal and a second terminal from a material that varies in resistance based on an oxygen concentration. An electrolyte layer is formed over the variable-resistance layer from a material that is stable at room temperature and that conducts oxygen ions in accordance with an applied voltage. A conductive gate layer is formed over the electrolyte layer.
    Type: Application
    Filed: December 23, 2020
    Publication date: May 20, 2021
    Inventors: Teodor K. Todorov, Douglas M. Bishop, Jianshi Tang, John Rozen
  • Patent number: 10991763
    Abstract: Embodiments of the invention are directed to a vertical resistive device. A non-limiting example of the vertical resistive device includes a horizontal plate having a conductive electrode region and a filament region. An opening extends through the filament region and is defined by sidewalls of the filament such that the filament region is positioned outside of the opening. A conductive pillar is positioned within the opening and is communicatively coupled to the filament region.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: April 27, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Takashi Ando, Robert L. Bruce, Hiroyuki Miyazoe, John Rozen
  • Patent number: 10957937
    Abstract: Three-terminal solid state Cu-ion actuated analog switching devices are provided. In one aspect, a method of forming a switching device includes: depositing a channel layer on a substrate; forming a source contact and a drain contact on opposite ends of the channel layer; forming a solid electrolyte on the channel layer over the source contact and the drain contact; and depositing a gate onto the solid electrolyte, wherein the source contact, the drain contact, and the gate are three terminals of the switching device. A switching device and a method of operating a switching device are also provided.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: March 23, 2021
    Assignee: International Business Machines Corporation
    Inventors: Teodor K. Todorov, Takashi Ando, Vijay Narayanan, John Rozen
  • Patent number: 10936944
    Abstract: A neuromorphic device includes a first electrode layer arranged on a substrate, and an electrolyte layer arranged on the first electrode layer. The electrolyte layer includes a solid electrolyte material. The neuromorphic device further includes an ion permeable, electrically conductive membrane arranged on the electrolyte layer and an ion intercalation layer arranged on the ion permeable, electrically conductive membrane. The neuromorphic device includes a second electrode layer arranged on the ion intercalation layer.
    Type: Grant
    Filed: August 22, 2019
    Date of Patent: March 2, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Teodor K. Todorov, John Rozen, Douglas M. Bishop
  • Patent number: 10930844
    Abstract: Variable-resistance devices and methods of forming the same include a variable-resistance layer, formed between a first terminal and a second terminal, that varies in resistance based on an oxygen concentration in the variable-resistance layer. An electrolyte layer that is stable at room temperature and that conducts oxygen ions in accordance with an applied voltage is positioned over the variable-resistance layer. A gate layer is configured to apply a voltage on the electrolyte layer and the variable-resistance layer and is positioned over the electrolyte layer.
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: February 23, 2021
    Assignee: International Business Machines Corporation
    Inventors: Teodor K. Todorov, Douglas M. Bishop, Jianshi Tang, John Rozen
  • Patent number: 10902912
    Abstract: An electrochemical device includes an enclosure formed over a structure and defining an area between vertical portions of the enclosure. An electrochemical channel structure includes an electrolyte formed within the area wherein the electrolyte is protected from exposure on sidewalls of the electrolyte by the enclosure.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: January 26, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jianshi Tang, John Rozen, John A. Ott
  • Publication number: 20210020427
    Abstract: Embodiments of the present invention are directed to forming a sub-stoichiometric metal-oxide film using a modified atomic layer deposition (ALD) process. In a non-limiting embodiment of the invention, a first precursor and a second precursor are selected. The first precursor can include a metal and a first ligand. The second precursor can include the same metal and a second ligand. A substrate can be exposed to the first precursor during a first pulse of an ALD cycle. The substrate can be exposed to the second precursor during a second pulse of the ALD cycle. The second pulse can occur directly after the first pulse without an intervening thermal oxidant. The substrate can be exposed to the thermal oxidant during a third pulse of the ALD cycle.
    Type: Application
    Filed: July 19, 2019
    Publication date: January 21, 2021
    Inventors: John Rozen, Martin Michael Frank, Yohei Ogawa
  • Publication number: 20210020780
    Abstract: A neuromorphic device includes a metal-oxide channel layer that has a variable-resistance between a first terminal and a second terminal. The neuromorphic device further includes a metal-oxide charge transfer layer over the metal-oxide channel layer that causes the metal-oxide channel layer to vary in resistance based on charge exchange between the metal-oxide charge transfer layer and the metal-oxide channel layer in accordance with an applied input signal. The neuromorphic device further includes a third terminal that applies the signal to the metal-oxide charge transfer layer and the metal-oxide channel layer.
    Type: Application
    Filed: July 17, 2019
    Publication date: January 21, 2021
    Inventors: JOHN ROZEN, TAKASHI ANDO, TEODOR KRASSIMIROV TODOROV, JIANSHI TANG
  • Publication number: 20210020426
    Abstract: Embodiments of the present invention are directed to forming a ternary compound using a modified atomic layer deposition (ALD) process. In a non-limiting embodiment of the invention, a first precursor and a second precursor are selected. The first precursor includes a first metal and a first ligand. The second precursor includes a second metal and a second ligand. The second ligand is selected based on the first ligand to target a second metal uptake. A substrate is exposed to the first precursor during a first pulse of an ALD cycle and the substrate is exposed to the second precursor during a second pulse of the ALD cycle, the second pulse occurring after the first pulse. The substrate is exposed to a third precursor (e.g., an oxidant) during a third pulse of the ALD cycle. The ternary compound can include a ternary oxide film.
    Type: Application
    Filed: July 17, 2019
    Publication date: January 21, 2021
    Inventors: Martin Michael Frank, John Rozen, Yohei Ogawa
  • Patent number: 10886467
    Abstract: A method is presented for constructing conductive bridging random access memory (CBRAM) stacks. The method includes forming a plurality of conductive lines within an interlayer dielectric (ILD), forming a CBRAM stack including at least an electrolyte layer, a conductive layer, a metal cap layer, and a top electrode such that a top end of the CBRAM stack has a smaller critical dimension than a bottom end of the CBRAM stack, forming a low-k dielectric layer over the CBRAM stack, and exposing a top surface of the CBRAM stack during a via opening.
    Type: Grant
    Filed: May 2, 2019
    Date of Patent: January 5, 2021
    Assignee: International Business Machines Corporation
    Inventors: Hiroyuki Miyazoe, Qing Cao, Takashi Ando, John Rozen
  • Patent number: 10885431
    Abstract: A neuromorphic device includes a first electrode layer arranged on a substrate, and an electrolyte layer arranged on the first electrode layer. The electrolyte layer includes a solid electrolyte material. The neuromorphic device further includes an ion permeable, electrically conductive membrane arranged on the electrolyte layer and an ion intercalation layer arranged on the ion permeable, electrically conductive membrane. The neuromorphic device includes a second electrode layer arranged on the ion intercalation layer.
    Type: Grant
    Filed: August 22, 2019
    Date of Patent: January 5, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Teodor K. Todorov, John Rozen, Douglas M. Bishop
  • Publication number: 20200395069
    Abstract: An electrochemical device includes an enclosure formed over a structure and defining an area between vertical portions of the enclosure. An electrochemical channel structure includes an electrolyte formed within the area wherein the electrolyte is protected from exposure on sidewalls of the electrolyte by the enclosure.
    Type: Application
    Filed: June 12, 2019
    Publication date: December 17, 2020
    Inventors: Jianshi Tang, John Rozen, John A. Ott
  • Publication number: 20200387779
    Abstract: A method of fabricating a neuromorphic device includes forming a variable-resistance layer between a first terminal and a second terminal, the variable-resistance layer varies in resistance based on an oxygen concentration in the variable-resistance layer. The method further includes forming an electrolyte layer over the variable-resistance layer that is stable at room temperature and that conducts oxygen ions in accordance with an applied voltage. The method further includes forming a gate layer over the electrolyte layer to apply a voltage on the electrolyte layer and the variable-resistance layer, the gate layer formed using an oxygen scavenging material.
    Type: Application
    Filed: June 10, 2019
    Publication date: December 10, 2020
    Inventors: Teodor Krassimirov Todorov, JIANSHI TANG, Douglas M. Bishop, John Rozen, Takashi Ando
  • Publication number: 20200357995
    Abstract: A method of forming a resistive processing unit is provided. The method includes forming a spacer on a substrate. The method further includes forming an intercalation layer segment on opposite sides of the spacer, and replacing a portion of each of the intercalation layer segments with an insulating region. The method further includes replacing the spacer with an electrolyte layer.
    Type: Application
    Filed: May 7, 2019
    Publication date: November 12, 2020
    Inventors: Matthew W. Copel, Takashi Ando, Ko-Tao Lee, John Rozen
  • Patent number: 10833270
    Abstract: A method of forming a resistive processing unit is provided. The method includes forming a spacer on a substrate. The method further includes forming an intercalation layer segment on opposite sides of the spacer, and replacing a portion of each of the intercalation layer segments with an insulating region. The method further includes replacing the spacer with an electrolyte layer.
    Type: Grant
    Filed: May 7, 2019
    Date of Patent: November 10, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Matthew W. Copel, Takashi Ando, Ko-Tao Lee, John Rozen
  • Patent number: 10833148
    Abstract: Capacitors and methods of forming the same include forming a dielectric layer on a first metal layer. The dielectric layer is oxygenated such that interstitial oxygen is implanted in the dielectric layer. A second metal layer is formed on the dielectric layer. The dielectric layer is heated to release the interstitial oxygen and to oxidize the first and second metal layers at interfaces between the dielectric layer and the first and second metal layers.
    Type: Grant
    Filed: January 12, 2017
    Date of Patent: November 10, 2020
    Assignee: International Business Machines Corporation
    Inventors: Takashi Ando, Hemanth Jagannathan, Paul C. Jamison, John Rozen
  • Publication number: 20200350499
    Abstract: A method is presented for constructing conductive bridging random access memory (CBRAM) stacks. The method includes forming a plurality of conductive lines within an interlayer dielectric (ILD), forming a CBRAM stack including at least an electrolyte layer, a conductive layer, a metal cap layer, and a top electrode such that a top end of the CBRAM stack has a smaller critical dimension than a bottom end of the CBRAM stack, forming a low-k dielectric layer over the CBRAM stack, and exposing a top surface of the CBRAM stack during a via opening.
    Type: Application
    Filed: May 2, 2019
    Publication date: November 5, 2020
    Inventors: Hiroyuki Miyazoe, Qing Cao, Takashi Ando, John Rozen
  • Publication number: 20200287236
    Abstract: Three-terminal solid state Cu-ion actuated analog switching devices are provided. In one aspect, a method of forming a switching device includes: depositing a channel layer on a substrate; forming a source contact and a drain contact on opposite ends of the channel layer; forming a solid electrolyte on the channel layer over the source contact and the drain contact; and depositing a gate onto the solid electrolyte, wherein the source contact, the drain contact, and the gate are three terminals of the switching device. A switching device and a method of operating a switching device are also provided.
    Type: Application
    Filed: March 7, 2019
    Publication date: September 10, 2020
    Inventors: Teodor K. Todorov, Takashi Ando, Vijay Narayanan, John Rozen