Patents by Inventor Ju-youn Kim

Ju-youn Kim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8941183
    Abstract: There is provided a semiconductor device comprising, at least one SRAM cell, wherein the SRAM cell includes a pull-up transistor, a pull-down transistor, and a pass-gate transistor, and an inversion-layer thickness (Tinv) of a gate stack of the pass-gate transistor is different from Tinv of a gate stack of the pull-up transistor and Tinv of a gate stack of the pull-down transistor.
    Type: Grant
    Filed: June 11, 2013
    Date of Patent: January 27, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Cheong-Sik Yu, Choel-Hwyi Bae, Ju-Youn Kim, Chang-Min Hong
  • Publication number: 20150014780
    Abstract: A semiconductor device includes a substrate including a first active region, a second active region and a field region between the first and second active regions, and a gate structure formed on the substrate to cross the first active region, the second active region and the field region. The gate structure includes a p type metal gate electrode and an n-type metal gate electrode directly contacting each other, the p-type metal gate electrode extends from the first active region less than half way toward the second active region.
    Type: Application
    Filed: January 28, 2014
    Publication date: January 15, 2015
    Inventors: Ju-Youn Kim, Hyung-Soon Jang, Jong-Mil Youn, Tae-Won Ha
  • Publication number: 20140370672
    Abstract: In a method for fabricating a semiconductor device, a first gate electrode and a second gate electrode are provided on a substrate, the first gate electrode and the second gate electrode being formed in a first region and a second region of the substrate, respectively. A conductive buffer layer is formed along sidewalls of the first gate electrode and the second gate electrode and on upper surfaces of the first gate electrode and second gate electrode. A first mask pattern covering the first region of the substrate on the buffer layer is formed. A first impurity region is formed in the substrate at sides of the second gate electrode using the first mask pattern as a mask of an ion implantation process.
    Type: Application
    Filed: January 31, 2014
    Publication date: December 18, 2014
    Inventors: Ju-Youn Kim, Sang-Duk Park, Jae-Kyung Seo, Kwang-Sub Yoon, In-Gu Yoon
  • Publication number: 20140370699
    Abstract: A method of fabricating a semiconductor device includes forming an interlayer insulating layer on a substrate, the interlayer insulating layer including a first trench and a second trench, forming a first conductive layer along sidewall surfaces and bottom surface of the first trench and forming a second conductive layer along sidewall surfaces and bottom surface of the second trench, forming a mask pattern on the second conductive layer, the mask pattern filling the second trench and being a bottom anti-reflective coating (BARC), and removing the first conductive layer using the mask pattern.
    Type: Application
    Filed: December 31, 2013
    Publication date: December 18, 2014
    Inventors: Ju-Youn Kim, Chul-Woong Lee, Tae-Sun Kim, Sang-Duk Park, Bum-Joon Youn, Tae-Won Ha
  • Publication number: 20140361380
    Abstract: A method of manufacturing a semiconductor device comprises forming an interlayer insulating film on a semiconductor substrate, the interlayer insulating film including a trench, forming a work function metal layer in the trench, forming an insulating film on the work function metal layer, forming a sacrificial film on the insulating film and filling the trench, forming a sacrificial film pattern with a top surface disposed in the trench by etching the sacrificial film, forming an insulating film pattern by selectively etching a portion of the insulating film which is formed higher than the sacrificial film pattern, and forming a work function metal pattern with a top surface disposed in the trench by selectively etching a portion of the work function metal layer which is formed higher than the insulating film pattern.
    Type: Application
    Filed: August 26, 2014
    Publication date: December 11, 2014
    Inventor: Ju-Youn KIM
  • Publication number: 20140353719
    Abstract: Provided are semiconductor devices and fabricating methods thereof. The semiconductor device includes a field insulating layer formed in a substrate, an interlayer dielectric layer formed on the field insulating layer and including a trench exposing at least a portion of the field insulating layer, a deposition insulating layer formed in the trench to be disposed on the field insulating layer, a gate insulating layer formed the trench to be disposed on the deposition insulating layer, and a metal gate formed the trench on the gate insulating layer.
    Type: Application
    Filed: January 30, 2014
    Publication date: December 4, 2014
    Inventor: Ju-Youn Kim
  • Publication number: 20140312387
    Abstract: A semiconductor device includes a base layer of a group III-V compound, a channel layer disposed on the base layer and including a group IV element, a nitride layer disposed on the channel layer, a gate insulation layer disposed on the nitride layer and a gate electrode disposed on the gate insulation layer. The concentration of nitrogen atoms existing at a first interface between the nitride layer and the gate insulation layer is higher than that existing at a second interface between the nitride layer and the channel layer.
    Type: Application
    Filed: December 10, 2013
    Publication date: October 23, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: JU-YOUN KIM
  • Publication number: 20140306295
    Abstract: A semiconductor device includes a substrate including a first region and a second region. The semiconductor device also includes first and second gate laminated bodies respectively formed on the first region and the second region, wherein the first gate laminated body includes a first gate insulating film that is in contact with the substrate and that includes a first high-k dielectric film; a first lower laminated body on the first gate insulating film; and a first upper laminated body on the first lower laminated body. The first lower laminated body includes a titanium nitride film, an aluminum film, and a titanium nitride film, laminated in sequence; and the second gate laminated body includes a second gate insulating film in contact with the substrate and including a second high-k dielectric film. Additionally, a second laminated body is formed on the second gate insulating film.
    Type: Application
    Filed: December 13, 2013
    Publication date: October 16, 2014
    Applicant: Samsung Electronics Co., Ltd.
    Inventor: Ju-Youn Kim
  • Publication number: 20140299939
    Abstract: Provided are a semiconductor device and a fabricating method of the semiconductor device. The semiconductor device may include an interlayer dielectric film formed on a substrate and including a trench, a gate insulating film formed in the trench, a first work function control film formed on the gate insulating film of the trench along bottom and sidewalls of the trench, a first metal gate pattern formed on the first work function control film of the trench and filling a portion of the trench, and a second metal gate pattern formed on the first metal gate pattern of the trench, the second metal gate pattern different from the first metal gate pattern.
    Type: Application
    Filed: December 18, 2013
    Publication date: October 9, 2014
    Applicant: Samsung Electronics Co., Ltd.
    Inventor: Ju-Youn Kim
  • Publication number: 20140239405
    Abstract: A semiconductor device using a high-k dielectric film is provided. The semiconductor device comprises a first gate insulating layer on a substrate and a first barrier layer on the first gate insulating layer, the first barrier layer having a first thickness. A first work function control layer is on the first barrier layer. A second barrier layer is present on the first work function control layer, the second barrier layer having a second thickness that is less than the first thickness.
    Type: Application
    Filed: March 15, 2013
    Publication date: August 28, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Tae-Won Ha, Suk-Hoon Kim, Ju-Youn Kim, Kwang-You Seo, Jong-Mil Youn
  • Publication number: 20140227868
    Abstract: A method of fabricating a semiconductor device includes forming a first gate pattern and a dummy gate pattern on a first active area and a second active area of a substrate, respectively, the first gate pattern including a first gate insulating layer and a silicon gate electrode, removing the dummy gate pattern to expose a surface of the substrate in the second active area, forming a second gate pattern including a second gate insulating layer and a metal gate electrode on the exposed surface of the substrate, the first gate insulating layer having a thickness larger than a thickness of the second gate insulating layer, and forming a gate silicide on the silicon gate electrode after forming the second gate pattern.
    Type: Application
    Filed: April 21, 2014
    Publication date: August 14, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: JU-YOUN KIM, HYUN-MIN CHOI, SUNG-KEE HAN, JE-DON KIM
  • Patent number: 8772146
    Abstract: A method of fabricating a semiconductor device includes forming a first gate pattern and a dummy gate pattern on a first active area and a second active area of a substrate, respectively, the first gate pattern including a first gate insulating layer and a silicon gate electrode, removing the dummy gate pattern to expose a surface of the substrate in the second active area, forming a second gate pattern including a second gate insulating layer and a metal gate electrode on the exposed surface of the substrate, the first gate insulating layer having a thickness larger than a thickness of the second gate insulating layer, and forming a gate silicide on the silicon gate electrode after forming the second gate pattern.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: July 8, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ju-Youn Kim, Hyun-Min Choi, Sung-Kee Han, Je-Don Kim
  • Patent number: 8772165
    Abstract: A method for manufacturing a semiconductor device, comprising forming a metal gate of a transistor on a substrate by a replacement metal gate process, wherein an insulating layer is formed on the substrate adjacent the metal gate, forming a hard mask on the substrate including the insulating layer and the metal gate, the hard mask including an opening exposing the metal gate, performing a metal pull back process on the substrate to remove a predetermined depth of a top portion of the metal gate, depositing a protective layer on the substrate, including on the hard mask and on top of a remaining portion of the metal gate, and performing chemical mechanical polishing to remove the hard mask and the protective layer, wherein the protective layer formed on top of the remaining portion of the metal gate remains.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: July 8, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ju Youn Kim, Jedon Kim
  • Publication number: 20140175609
    Abstract: Use of a replacement metal gate (RMG) process provides an opportunity to create precision polysilicon resistors alongside metal gate transistors. During formation of a sacrificial polysilicon gate, the precision polysilicon resistor can also be formed from the same polysilicon film. The polysilicon resistor can be slightly recessed so that a protective insulating layer can cover the resistor during subsequent replacement of the sacrificial gate with a metal gate. The final structure of the precision polysilicon resistor fabricated using such a process is more compact and less complex than existing structures that provide metal resistors for integrated circuits having metal gate transistors. Furthermore, the precision polysilicon resistor can be freely tuned to have a desired sheet resistance by either implanting the polysilicon film with dopants, adjusting the polysilicon film thickness, or both.
    Type: Application
    Filed: December 21, 2012
    Publication date: June 26, 2014
    Inventors: Pietro Montanini, Gerald Leake, JR., Brett H. Engel, Roderick Mason Miller, Ju Youn Kim
  • Publication number: 20140167177
    Abstract: A semiconductor device includes a channel layer over an active region, first and second field regions adjacent the active region, and a gate structure over the channel layer and portions of the first and second field regions. The first and second field regions include grooves adjacent respective sidewalls of the channel layer, and bottom surfaces of the grooves are below a bottom surface of the channel layer.
    Type: Application
    Filed: November 15, 2013
    Publication date: June 19, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Young-Hun KIM, Ju-Youn KIM, Koung-Min RYU, Jong-Mil YOUN, Jong-Ho LEE
  • Publication number: 20140103403
    Abstract: A method for manufacturing a semiconductor device is provided. The method includes forming an insulation film including a trench on a substrate, forming a first metal gate film pattern along side and bottom surfaces of the trench, forming a second metal gate film on the first metal gate film pattern and the insulation film, and forming a second metal gate film pattern positioned on the first metal gate film pattern by removing the second metal gate film to expose at least a portion of the insulation film and forming a blocking layer pattern on the second metal gate film pattern by oxidizing an exposed surface of the second metal gate film pattern.
    Type: Application
    Filed: October 12, 2012
    Publication date: April 17, 2014
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Ju-Youn KIM, Je-Don KIM
  • Publication number: 20140103441
    Abstract: A semiconductor device includes an interlayer insulating film formed on a substrate, the insulating layer including a trench. A gate insulating layer is formed on a bottom surface of the trench and a reaction prevention layer is formed on the gate insulating layer on the bottom surface of the trench. A replacement metal gate structure is formed on the reaction prevention layer of the trench to fill the trench.
    Type: Application
    Filed: July 22, 2013
    Publication date: April 17, 2014
    Inventors: Ju-Youn Kim, Jong-Mil Youn, Jong-Joon Park, Kwang-Yong Jang, Jun-Sun Hwang
  • Publication number: 20140099784
    Abstract: A method for manufacturing a semiconductor device includes forming an insulation film including a trench on a substrate, forming a first metal gate film pattern and a second metal gate film pattern in the trench, redepositing a second metal gate film on the first and second metal gate film patterns and the insulation film, and forming a redeposited second metal gate film pattern on the first and second metal gate film patterns by performing a planarization process for removing a portion of the redeposited second metal gate film so as to expose a top surface of the insulation film, and forming a blocking layer pattern on the redeposited second metal gate film pattern by oxidizing an exposed surface of the redeposited second metal gate film pattern.
    Type: Application
    Filed: October 9, 2012
    Publication date: April 10, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Ju-Youn KIM, JE-DON KIM
  • Patent number: 8685827
    Abstract: A method for manufacturing a semiconductor device, comprising forming a first gate stack portion on a substrate, the first gate stack portion including a first gate oxide layer and a first polysilicon layer on the first gate oxide layer, forming a second gate stack portion on the substrate, the second gate stack portion including a second gate oxide layer and a second polysilicon layer on the second gate oxide layer, forming a resistor portion on the substrate, the resistor portion including a third gate oxide layer and a third polysilicon layer on the third gate oxide layer, covering the resistor portion with a photoresist, removing respective first portions of the first and second polysilicon layers from the first and second gate stack portions, removing the photoresist from the resistor portion, and after removing the photoresist from the resistor portion, removing respective remaining portions of the first and second polysilicon layers from the first and second gate stack portions.
    Type: Grant
    Filed: July 13, 2011
    Date of Patent: April 1, 2014
    Assignee: Samsung Electronics Co., Ltd
    Inventors: Ju Youn Kim, Jedon Kim
  • Publication number: 20140061813
    Abstract: A semiconductor device includes a semiconductor substrate including a first region and a second region, a first high-k dielectric film pattern on the first region, a second high-k dielectric film pattern on the second region and having the same thickness as the first high-k dielectric film pattern. First and second work function control film patterns are positioned on the high-k dielectric film patterns of the first region. Third and fourth work function control patterns are positioned on the high-k dielectric film pattern of the second region, the first work function control pattern being thicker than the third work function control pattern and the fourth work function control pattern being thicker than the second.
    Type: Application
    Filed: May 24, 2013
    Publication date: March 6, 2014
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Cheong-Sik Yu, Choel-Hwyi Bae, Ju-Youn Kim, Chang-Min Hong