Patents by Inventor Justin K. Brask

Justin K. Brask has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090039446
    Abstract: A semiconductor device is described. That semiconductor device comprises a high-k gate dielectric layer that is formed on a substrate that applies strain to the high-k gate dielectric layer, and a metal gate electrode that is formed on the high-k gate dielectric layer.
    Type: Application
    Filed: October 7, 2008
    Publication date: February 12, 2009
    Inventors: Matthew V. Metz, Suman Datta, Mark L. Doczy, Justin K. Brask, Jack Kavalieros, Robert S. Chau
  • Publication number: 20090042405
    Abstract: A method for making a semiconductor device is described. That method comprises forming a first dielectric layer on a substrate, a trench within the first dielectric layer, and a second dielectric layer on the substrate. The second dielectric layer has a first part that is formed in the trench and a second part. After a first metal layer with a first workfunction is formed on the first and second parts of the second dielectric layer, part of the first metal layer is converted into a second metal layer with a second workfunction.
    Type: Application
    Filed: June 12, 2008
    Publication date: February 12, 2009
    Inventors: Mark L. Doczy, Justin K. Brask, Jack Kavalieros, Uday Shah, Matthew V. Metz, Suman Datta, Ramune Nagisetty, Robert S. Chau
  • Patent number: 7485503
    Abstract: A Group III-V Semiconductor device and method of fabrication is described. A high-k dielectric is interfaced to a confinement region by a chalcogenide region.
    Type: Grant
    Filed: November 30, 2005
    Date of Patent: February 3, 2009
    Assignee: Intel Corporation
    Inventors: Justin K. Brask, Suman Datta, Mark L. Doczy, James M. Blackwell, Matthew V. Metz, Jack T. Kavalieros, Robert S. Chau
  • Publication number: 20090020825
    Abstract: Complementary metal oxide semiconductor metal gate transistors may be formed by depositing a metal layer in trenches formerly inhabited by patterned gate structures. The patterned gate structures may have been formed of polysilicon in one embodiment. The metal layer may have a workfunction most suitable for forming one type of transistor, but is used to form both the n and p-type transistors. The workfunction of the metal layer may be converted, for example, by ion implantation to make it more suitable for use in forming transistors of the opposite type.
    Type: Application
    Filed: September 10, 2008
    Publication date: January 22, 2009
    Inventors: Mark Doczy, Mitchell Taylor, Justin K. Brask, Jack Kavalieros, Suman Datta, Matthew V. Metz, Robert S. Chau, Jack Hwang
  • Publication number: 20090020836
    Abstract: A method for making a semiconductor device is described. That method comprises forming an oxide layer on a substrate, and forming a high-k dielectric layer on the oxide layer. The oxide layer and the high-k dielectric layer are then annealed at a sufficient temperature for a sufficient time to generate a gate dielectric with a graded dielectric constant.
    Type: Application
    Filed: February 29, 2008
    Publication date: January 22, 2009
    Inventors: Mark L. Doczy, Gilbert Dewey, Suman Datta, Sangwoo Pae, Justin K. Brask, Jack Kavalieros, Matthew V. Metz, Adrian B. Sherrill, Markus Kuhn, Robert S. Chau
  • Patent number: 7479421
    Abstract: A process capable of integrating both planar and non-planar transistors onto a bulk semiconductor substrate, wherein the channel of all transistors is definable over a continuous range of widths.
    Type: Grant
    Filed: September 28, 2005
    Date of Patent: January 20, 2009
    Assignee: Intel Corporation
    Inventors: Jack T. Kavalieros, Justin K. Brask, Brian S. Doyle, Uday Shah, Suman Datta, Mark L. Doczy, Matthew V. Metz, Robert S. Chau
  • Patent number: 7470972
    Abstract: A transistor may be formed of different layers of silicon germanium, a lowest layer having a graded germanium concentration and upper layers having constant germanium concentrations such that the lowest layer is of the form Si1-xGex. The highest layer may be of the form Si1-yGey on the PMOS side. A source and drain may be formed of epitaxial silicon germanium of the form Si1-zGez on the PMOS side. In some embodiments, x is greater than y and z is greater than x in the PMOS device. Thus, a PMOS device may be formed with both uniaxial compressive stress in the channel direction and in-plane biaxial compressive stress. This combination of stress may result in higher mobility and increased device performance in some cases.
    Type: Grant
    Filed: March 11, 2005
    Date of Patent: December 30, 2008
    Assignee: Intel Corporation
    Inventors: Jack Kavalieros, Justin K. Brask, Mark L. Doczy, Matthew V. Metz, Suman Datta, Brian S. Doyle, Robert S. Chau, Everett X. Wang, Philippe Matagne, Lucian Shifren, Been Y. Jin, Mark Stettler, Martin D. Giles
  • Publication number: 20080318385
    Abstract: The present invention relates to a Tunnel Field Effect Transistor (TFET), which utilizes angle implantation and amorphization to form asymmetric source and drain regions. The TFET further comprises a silicon germanium alloy epitaxial source region with a conductivity opposite that of the drain.
    Type: Application
    Filed: August 22, 2008
    Publication date: December 25, 2008
    Inventors: Jack T. Kavalieros, Matthew V. Metz, Gilbert Dewey, Been-Yih Jin, Justin K. Brask, Suman Datta, Robert S. Chau
  • Patent number: 7465976
    Abstract: The present invention relates to a Tunnel Field Effect Transistor (TFET). which utilizes angle implantation and amorphization to form asymmetric source and drain regions. The IFET further includes a silicon germanium alloy epitaxial source region with a conductivity opposite that of the drain.
    Type: Grant
    Filed: May 13, 2005
    Date of Patent: December 16, 2008
    Assignee: Intel Corporation
    Inventors: Jack T. Kavalieros, Matthew V. Metz, Gilbert Dewey, Ben Jin, Justin K. Brask, Suman Datta, Robert S. Chau
  • Patent number: 7449756
    Abstract: A semiconductor device is described. That semiconductor device comprises a high-k gate dielectric layer that is formed on a substrate that applies strain to the high-k gate dielectric layer, and a metal gate electrode that is formed on the high-k gate dielectric layer.
    Type: Grant
    Filed: June 13, 2005
    Date of Patent: November 11, 2008
    Assignee: Intel Corporation
    Inventors: Matthew V. Metz, Suman Datta, Mark L. Doczy, Justin K. Brask, Jack Kavalieros, Robert S. Chau
  • Patent number: 7442983
    Abstract: A method for making a semiconductor device is described. That method comprises forming an oxide layer on a substrate, and forming a high-k dielectric layer on the oxide layer. The oxide layer and the high-k dielectric layer are then annealed at a sufficient temperature for a sufficient time to generate a gate dielectric with a graded dielectric constant.
    Type: Grant
    Filed: March 27, 2006
    Date of Patent: October 28, 2008
    Assignee: Intel Corporation
    Inventors: Mark L. Doczy, Gilbert Dewey, Suman Datta, Sangwoo Pae, Justin K. Brask, Jack Kavalieros, Matthew V. Metz, Adrian B. Sherrill, Markus Kuhn, Robert S. Chau
  • Publication number: 20080258207
    Abstract: A contact architecture for nanoscale channel devices having contact structures coupling to and extending between source or drain regions of a device having a plurality of parallel semiconductor bodies. The contact structures being able to contact parallel semiconductor bodies having sub-lithographic pitch.
    Type: Application
    Filed: September 14, 2007
    Publication date: October 23, 2008
    Inventors: Marko Radosavljevic, Amlan Majumdar, Brian S. Doyle, Jack Kavalieros, Mark L. Doczy, Justin K. Brask, Uday Shah, Suman Datta, Robert S. Chau
  • Patent number: 7439113
    Abstract: Complementary metal oxide semiconductor metal gate transistors may be formed by depositing a metal layer in trenches formerly inhabited by patterned gate structures. The patterned gate structures may have been formed of polysilicon in one embodiment. The metal layer may have a workfunction most suitable for forming one type of transistor, but is used to form both the n and p-type transistors. The workfunction of the metal layer may be converted, for example, by ion implantation to make it more suitable for use in forming transistors of the opposite type.
    Type: Grant
    Filed: July 12, 2004
    Date of Patent: October 21, 2008
    Assignee: Intel Corporation
    Inventors: Mark Doczy, Mitchell Taylor, Justin K. Brask, Jack Kavalieros, Suman Datta, Matthew V. Metz, Robert S. Chau, Jack Hwang
  • Patent number: 7439571
    Abstract: Methods of forming a microelectronic structure are described. Those methods comprise providing a substrate comprising source/drain and gate regions, wherein the gate region comprises a metal layer disposed on a gate dielectric layer, and then laser annealing the substrate.
    Type: Grant
    Filed: May 2, 2005
    Date of Patent: October 21, 2008
    Assignee: Intel Corporation
    Inventors: Mark L. Doczy, Mark Y. Liu, Jack Kavalieros, Justin K. Brask, Matthew V. Metz, Robert S. Chau
  • Patent number: 7427775
    Abstract: The mobility of carriers may be increased in strained channel epitaxial source/drain transistors. Doped silicon material may be blanket deposited after removing ion implanted source/drain regions. The blanket deposition forms amorphous films over non-source/drain areas and crystalline films in source/drain regions. By using an etch which is selective to amorphous silicon, the amorphous material may be removed. This may avoid some problems associated with selective deposition of the doped silicon material.
    Type: Grant
    Filed: April 24, 2007
    Date of Patent: September 23, 2008
    Assignee: Intel Corporation
    Inventors: Anand Murthy, Justin K. Brask, Andrew N. Westmeyer, Boyan Boyanov, Nick Lindert
  • Patent number: 7425490
    Abstract: In a metal gate replacement process, a gate electrode stack may be formed of a dielectric covered by a sacrificial metal layer covered by a polysilicon gate electrode. In subsequent processing of the source/drains, high temperature steps may be utilized. The sacrificial metal layer prevents reactions between the polysilicon gate electrode and the underlying high dielectric constant dielectric. As a result, adverse consequences of the reaction between the polysilicon and the high dielectric constant dielectric material can be reduced.
    Type: Grant
    Filed: June 24, 2004
    Date of Patent: September 16, 2008
    Assignee: Intel Corporation
    Inventors: Jack Kavalieros, Justin K. Brask, Mark L. Doczy, Uday Shah, Matthew Metz, Suman Datta, Robert S. Chau
  • Patent number: 7425500
    Abstract: A method for fabricating a three-dimensional transistor is described. Atomic Layer Deposition of nickel, in one embodiment, is used to form a uniform silicide on all epitaxially grown source and drain regions, including those facing downwardly.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: September 16, 2008
    Assignee: Intel Corporation
    Inventors: Matthew V. Metz, Suman Datta, Mark L. Doczy, Jack T. Kavalieros, Justin K. Brask, Robert S. Chau
  • Patent number: 7422936
    Abstract: Replacement metal gates may be formed by removing a polysilicon layer from a gate structure. The gate structure may be formed by patterning the polysilicon layer and depositing a spacer layer over the gate structure such that the spacer layer has a first polish rate. The spacer layer is then etched to form a sidewall spacer. An interlayer dielectric is applied over the gate structure with the sidewall spacer. The interlayer dielectric has a second polish rate higher than the first polish rate. A hard mask may also be applied over the gate structure and implanted so that the hard mask may be more readily removed.
    Type: Grant
    Filed: August 25, 2004
    Date of Patent: September 9, 2008
    Assignee: Intel Corporation
    Inventors: Chris E. Barns, Matt Prince, Mark L. Doczy, Justin K. Brask, Jack Kavalieros
  • Publication number: 20080211033
    Abstract: A metal layer is formed on a dielectric layer, which is formed on a substrate. After forming a masking layer on the metal layer, the exposed sides of the dielectric layer are covered with a polymer diffusion barrier.
    Type: Application
    Filed: May 7, 2008
    Publication date: September 4, 2008
    Inventors: Robert B. Turkot, Justin K. Brask, Jack Kavalieros, Mark L. Doczy, Matthew V. Metz, Uday Shah, Suman Datta, Robert S. Chau
  • Publication number: 20080188041
    Abstract: Embodiments of the invention provide a device with a metal gate, a high-k gate dielectric layer, source/drain extensions a distance beneath the metal gate, and lateral undercuts in the sides of the metal gate.
    Type: Application
    Filed: March 26, 2008
    Publication date: August 7, 2008
    Inventors: Suman Datta, Justin K. Brask, Jack Kavalieros, Brian S. Doyle, Gilbert Dewey, Mark L. Doczy, Robert S. Chau