Patents by Inventor Kang-Yoon Lee

Kang-Yoon Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080211013
    Abstract: In a semiconductor memory device having a vertical channel transistor a body of which is connected to a substrate and a method of fabricating the same, the semiconductor memory device includes a semiconductor substrate including a plurality of pillars arranged spaced apart from one another, and each of the pillars includes a body portion and a pair of pillar portions extending from the body portion and spaced apart from each other. A gate electrode is formed to surround each of the pillar portions. A bitline is disposed on the body portion to penetrate a region between a pair of the pillar portions of each of the first pillars arranged to extend in a first direction. A wordline is disposed over the bitline, arranged to extend in a second direction intersecting the first direction, and configured to contact the side surface of the gate electrode. A first doped region is formed in the upper surface of each of the pillar portions of the pillar.
    Type: Application
    Filed: May 9, 2008
    Publication date: September 4, 2008
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Hyeoung-won Seo, Jae-man Yoon, Kang-yoon Lee, Dong-gun Park, Bong-soo Kim, Seong-goo Kim
  • Publication number: 20080179647
    Abstract: A semiconductor device comprising a barrier insulating layer and a related method of fabrication is disclosed. The semiconductor device semiconductor substrate includes a plurality of active regions, wherein active regions are defined by a device isolation layer and are disposed along a first direction; a plurality of bit line electrodes connected to the active regions, wherein each of the bit line electrodes extends along a second direction; and a plurality of first barrier insulating layers. Each of the first barrier insulating layers extends along a third direction, at least one of the first barrier insulating layers is disposed on a corresponding first portion of the device isolation layer disposed between two of the active regions, the two of the active regions are adjacent along the first direction, and the first direction and the second direction differ from one another.
    Type: Application
    Filed: December 26, 2007
    Publication date: July 31, 2008
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Hyeoung-won Seo, Dong-hyun Kim, Kang-yoon Lee, Seong-goo Kim
  • Patent number: 7387931
    Abstract: In a semiconductor memory device having a vertical channel transistor a body of which is connected to a substrate and a method of fabricating the same, the semiconductor memory device includes a semiconductor substrate including a plurality of pillars arranged spaced apart from one another, and each of the pillars includes a body portion and a pair of pillar portions extending from the body portion and spaced apart from each other. A gate electrode is formed to surround each of the pillar portions. A bitline is disposed on the body portion to penetrate a region between a pair of the pillar portions of each of the first pillars arranged to extend in a first direction. A wordline is disposed over the bitline, arranged to extend in a second direction intersecting the first direction, and configured to contact the side surface of the gate electrode. A first doped region is formed in the upper surface of each of the pillar portions of the pillar.
    Type: Grant
    Filed: October 11, 2006
    Date of Patent: June 17, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyeoung-won Seo, Jae-man Yoon, Kang-yoon Lee, Dong-gun Park, Bong-soo Kim, Seong-goo Kim
  • Patent number: 7368352
    Abstract: In a semiconductor device and a method of fabricating the same, a vertical channel transistor has a cell occupation area of 4F2.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: May 6, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Bong-soo Kim, Jae-man Yoon, Seong-goo Kim, Hyeoung-won Seo, Dong-gun Park, Kang-yoon Lee
  • Publication number: 20080079070
    Abstract: A semiconductor device having a buried gate line with a shaped gate trench and a method of fabricating the same are disclosed. The semiconductor device includes a trench isolation layer provided in a semiconductor substrate to define a multi-surfaced active region/channel. A gate line extending to the trench isolation layer fills a portion of the gate trench. The gate trench is formed with a series of depressions to accommodate peaks in the channel. The combination of depressions/peaks operate to increase the effective area of the channel, thereby enabling smaller channel semiconductor devices to be formed without increasing the width thereof.
    Type: Application
    Filed: May 1, 2007
    Publication date: April 3, 2008
    Inventors: Hyeoung-Won Seo, Young-Woong Son, Kang-Yoon Lee, Bong-Soo Kim
  • Patent number: 7352050
    Abstract: In a fuse region of a semiconductor device, and a method of fabricating the same, the fuse region includes an interlayer insulating layer on a semiconductor substrate, a plurality of fuses on the interlayer insulating layer disposed in parallel with each other, a blocking layer on the interlayer insulating layer between each of the plurality of fuses and in parallel with the plurality of fuses, and a plurality of fuse grooves recessed into the interlayer insulating layer between each of the plurality of fuses and the blocking layer.
    Type: Grant
    Filed: March 15, 2005
    Date of Patent: April 1, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyuck-Jin Kang, Chang-Suk Hyun, Il-Young Moon, Kang-Yoon Lee, Kwang-bo Sim, Sang-Kil Jeon
  • Publication number: 20080061382
    Abstract: Provided are transistors, semiconductor integrated circuit interconnections and methods of forming the same. The transistors, semiconductor integrated circuit interconnections and methods of forming the same may improve electrical characteristics between gate electrodes or interconnection electrodes and simplify a semiconductor fabrication process related to gate electrodes or interconnection electrodes. A material layer having first and second regions may be prepared. A trench may be formed in a selected portion of the first region. Transistors or semiconductor integrated circuit interconnections may be in the first and second regions, respectively. One of the transistors or the semiconductor integrated circuit interconnections may be formed in the trench. The transistors or the semiconductor integrated circuit interconnections may be electrically insulated from each other.
    Type: Application
    Filed: February 9, 2007
    Publication date: March 13, 2008
    Inventors: Seong-Goo Kim, Kang-Yoon Lee, Yun-Gi Kim, Bong-Soo Kim
  • Publication number: 20080003753
    Abstract: A semiconductor device includes an isolation layer disposed in a semiconductor device to define an active region. A gate trench is disposed across the active region and extends to the isolation layer. An insulated gate electrode fills a portion of the gate trench and covers at least one sidewall of the active region. A portion of the gate electrode, that covers at least one sidewall of the active region, extends under a portion of the gate electrode that crosses the active region. An insulating pattern is disposed on the gate electrode.
    Type: Application
    Filed: December 8, 2006
    Publication date: January 3, 2008
    Inventors: Hyeoung-Won Seo, Jae-Man Yoon, Kang-Yoon Lee, Young-Woong Son
  • Publication number: 20070284647
    Abstract: A semiconductor device may include a substrate having a cell active region. A cell gate electrode may be formed in the cell active region. A cell gate capping layer may be formed on the cell gate electrode. At least two cell epitaxial layers may be formed on the cell active region. One of the at least two cell epitaxial layers may extend to one end of the cell gate capping layer and another one of the at least two cell epitaxial layers may extend to an opposite end of the cell gate capping layer. Cell impurity regions may be disposed in the cell active region. The cell impurity regions may correspond to a respective one of the at least two cell epitaxial layers.
    Type: Application
    Filed: February 12, 2007
    Publication date: December 13, 2007
    Inventors: Hyeoung-Won Seo, Jae-Man Yoon, Kang-Yoon Lee, Bong-Soo Kim
  • Publication number: 20070181925
    Abstract: A semiconductor device having a vertical channel capable of reducing the interface contact resistance between a gate electrode surrounding an active pillar and a word line connecting the gate electrode and a method of manufacturing the same is provided. The semiconductor device includes a plurality of active pillars extending in a direction perpendicular to a surface of a semiconductor substrate. A word line structure is formed on an outer periphery for connecting the active pillars disposed in the same row or column. Top and bottom source/drain regions are formed over and under the active pillars, respectively, in relation to the word line structure.
    Type: Application
    Filed: February 6, 2007
    Publication date: August 9, 2007
    Inventors: Jae-man Yoon, Bong-soo Kim, Hyeoung-won Seo, Kang-yoon Lee
  • Publication number: 20070152255
    Abstract: Channels of two transistors are vertically formed on portions of two opposite side surfaces of one active region, and gate electrodes are vertically formed on a device isolation layer contacting the channels of the active region. A common bit line contact plug is formed in the central portions of the active region, two storage node contact plugs are formed on both sides of the bit line contact plug, and an insulating spacer is formed on a side surface of the bit line contact plug. A word line, a bit line, and a capacitor are sequentially stacked on the semiconductor substrate, like a conventional semiconductor memory device.
    Type: Application
    Filed: November 16, 2006
    Publication date: July 5, 2007
    Inventors: Hyeoung-won Seo, Bong-soo Kim, Dong-gun Park, Kang-yoon Lee, Jae-man Yoon, Seong-goo Kim, Seung-bae Park
  • Publication number: 20070120183
    Abstract: An integrated circuit device includes a substrate having a trench formed therein. An isolation layer is disposed in the trench so as to cover a first sidewall portion of the trench and an entire bottom of the trench without covering a second sidewall portion of the trench. A buffer layer is disposed between the isolation layer and the trench. A gate insulating layer is disposed on the second sidewall portion of the trench and extends onto the substrate adjacent to the trench.
    Type: Application
    Filed: January 29, 2007
    Publication date: May 31, 2007
    Inventors: Kang-yoon Lee, Jong-woo Park
  • Publication number: 20070087499
    Abstract: In a semiconductor memory device having a vertical channel transistor a body of which is connected to a substrate and a method of fabricating the same, the semiconductor memory device includes a semiconductor substrate including a plurality of pillars arranged spaced apart from one another, and each of the pillars includes a body portion and a pair of pillar portions extending from the body portion and spaced apart from each other. A gate electrode is formed to surround each of the pillar portions. A bitline is disposed on the body portion to penetrate a region between a pair of the pillar portions of each of the first pillars arranged to extend in a first direction. A wordline is disposed over the bitline, arranged to extend in a second direction intersecting the first direction, and configured to contact the side surface of the gate electrode. A first doped region is formed in the upper surface of each of the pillar portions of the pillar.
    Type: Application
    Filed: October 11, 2006
    Publication date: April 19, 2007
    Inventors: Hyeoung-won Seo, Jae-man Yoon, Kang-yoon Lee, Dong-gun Park, Bong-soo Kim, Seong-goo Kim
  • Publication number: 20070082448
    Abstract: In a semiconductor device and a method of fabricating the same, a vertical channel transistor has a cell occupation area of 4 F2.
    Type: Application
    Filed: June 30, 2006
    Publication date: April 12, 2007
    Inventors: Bong-soo Kim, Jae-man Yoon, Seong-goo Kim, Hyeoung-won Seo, Dong-gun Park, Kang-yoon Lee
  • Publication number: 20070080385
    Abstract: There are provided a semiconductor device having a vertical transistor and a method of fabricating the same. The method includes preparing a semiconductor substrate having a cell region and a peripheral circuit region. Island-shaped vertical gate structures two-dimensionally aligned along a row direction and a column direction are formed on the substrate of the cell region. Each of the vertical gate structures includes a semiconductor pillar and a gate electrode surrounding a center portion of the semiconductor pillar. A bit line separation trench is formed inside the semiconductor substrate below a gap region between the vertical gate structures, and a peripheral circuit trench confining a peripheral circuit active region is formed inside the semiconductor substrate of the peripheral circuit region. The bit line separation trench is formed in parallel with the column direction of the vertical gate structures.
    Type: Application
    Filed: June 9, 2006
    Publication date: April 12, 2007
    Inventors: Bong-Soo Kim, Kang-Yoon Lee, Dong-Gun Park, Jae-Man Yoon, Seong-Goo Kim, Hyeoung-Won Seo
  • Publication number: 20070075359
    Abstract: In a circuit device including vertical transistors connected to buried bitlines and a method of manufacturing the circuit device, the circuit device includes a semiconductor substrate including a peripheral circuit region and left and right cell regions at both sides of the peripheral circuit region; bottom active regions arranged on the semiconductor substrate to be spaced apart from one another in a column direction and to extend from the peripheral circuit region alternately to the left cell region and the right cell region in a row direction; channel pillars protruding from the bottom active regions in a vertical direction and arranged to be aligned in the row direction and spaced apart from one another; gate electrodes provided with a gate dielectric layer and attached to surround side surfaces of the channel pillars; buried bitlines extending along the bottom active regions, the bottom active regions including a bottom source/drain region; local interconnection lines contacting side surfaces of the gate
    Type: Application
    Filed: October 2, 2006
    Publication date: April 5, 2007
    Inventors: Jae-man Yoon, Dong-gun Park, Kang-yoon Lee, Choong-ho Lee, Bong-soo Kim, Seong-goo Kim, Hyeoung-won Seo, Seung-bae Park
  • Patent number: 7187032
    Abstract: An integrated circuit device includes a substrate that has a trench formed therein. An isolation layer is disposed in the trench and covers a first sidewall portion of the trench. A gate electrode is disposed on a second sidewall portion of the trench.
    Type: Grant
    Filed: June 14, 2004
    Date of Patent: March 6, 2007
    Assignee: Samsung Electronics Co., Ltd
    Inventors: Kang-yoon Lee, Jong-woo Park
  • Publication number: 20070015362
    Abstract: Embodiments of a semiconductor device having storage nodes include an interlayer insulating layer disposed on a semiconductor substrate; a conductive pad disposed in the interlayer insulating layer to contact with a predetermined portion of the substrate, an upper portion of the conductive pad protruding above the interlayer insulating layer; an etch stop layer disposed on the conductive pad and the interlayer insulating layer; and storage nodes penetrating the etch stop layer and disposed on the conductive pad. A penetration path of wet etchant is completely blocked during the wet etch process that removes the mold oxide layer. Therefore, inadvertent etching of the insulating layer due to penetration of wet etchant is prevented, resulting in a stronger, more stable, storage node structure.
    Type: Application
    Filed: July 14, 2006
    Publication date: January 18, 2007
    Inventors: Cheol-Ju YUN, Kang-Yoon LEE, In-Ho NAM
  • Patent number: 7071535
    Abstract: An integrated circuit package includes an inductance loop formed from a connection of lead wires and one or more input/output (I/O) package pins. In one embodiment, the inductance loop is formed from a first wire which connects a first bonding pad on the integrated circuit chip to a first I/O pin of the package and a second wire which connects a second bonding pad on the chip to a second I/O pin of the package. To complete the inductor loop, the first and second I/O pins are connected by a conductive bridge between the pins. The bridge may be formed by making the I/O pins have a unitary construction. In another embodiment, the bridge is formed by a metallization layer located either on the surface of the package substrate or within this substrate. The I/O pins are preferably ones which are adjacent one another; however, the loop may be formed from non-adjacent connections of I/O pins based, for example, on loop-length requirements, space considerations, and/or other design or functional factors.
    Type: Grant
    Filed: August 27, 2004
    Date of Patent: July 4, 2006
    Assignee: GCT Semiconductor, Inc.
    Inventors: Yido Koo, Hyungki Huh, Kang Yoon Lee, Jeong-Woo Lee, Joonban Park, Kyeongho Lee
  • Patent number: 6963620
    Abstract: A translational-loop transmitter generates RF signals using at most one phase-locked-loop (PLL) circuit. In one embodiment, a single PLL generates two local oscillation signals. The first oscillation signal is mixed with a baseband signal to generate an intermediate frequency signal. The second oscillation signal is input into the translational loop to adjust a voltage-controlled oscillator to the desired carrier frequency. In order to perform this type of modulation, the frequencies of the local oscillation signals are set so that they are harmonically related to one another relative to the carrier frequency. Other embodiments generate only one oscillation signal. Under these conditions, the intermediate frequency signal is generated using the oscillation signal, and a frequency divider in the translational loop is used to generate a control signal for adjusting the voltage-controlled oscillator to the carrier frequency.
    Type: Grant
    Filed: October 31, 2002
    Date of Patent: November 8, 2005
    Assignee: GCT Semiconductor, Inc.
    Inventors: Kang-Yoon Lee, Eunseok Song, Jeong Woo Lee, Joonbae Park, Kyeongho Lee