Patents by Inventor Katsuyuki Sekine

Katsuyuki Sekine has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110069530
    Abstract: According to one embodiment, there is provided a method of manufacturing a nonvolatile memory device. In this method, a first voltage may be applied to a variable resistive element having a resistance value which is electrically rewritable in a high resistance and in a low resistance. In this method, a second voltage may be applied to the variable resistive element in a case where the resistance value of the variable resistive element to which the first voltage has been applied is greater than a resistance value of the low resistance and is not greater than a resistance value of the high resistance. Further, in this method, the applying of the second voltage to the variable resistive element may be repeated until the resistance value of the variable resistive element to which the second voltage has been applied falls within a range of the resistance value of the low resistance.
    Type: Application
    Filed: June 25, 2010
    Publication date: March 24, 2011
    Inventors: Katsuyuki SEKINE, Ryota Fujitsuka, Yoshio Ozawa
  • Publication number: 20110068316
    Abstract: According to one embodiment, a nonvolatile memory device includes a plurality of nonvolatile memory elements each of that includes a resistance change film. The resistance change film is capable of recording information by transitioning between a plurality of states having different resistances in response to at least one of a voltage applied to the resistance change film or a current passed through the resistance change film, and the resistance change film includes an oxide containing at least one element selected from the group consisting of Hf, Zr, Ni, Ta, W, Co, Al, Fe, Mn, Cr, and Nb. An impurity element contained in the resistance change film is at least one element selected from the group consisting of Mg, Ca, Sr, Ba, Sc, Y, La, V, Ta, B, Ga, In, Tl, C, Si, Ge, Sn, Pb, N, P, As, Sb, Bi, S, Se, and Te, and the impurity element has an absolute value of standard Gibbs energy of oxide formation larger than an absolute value of standard Gibbs energy of oxide formation of the element contained in the oxide.
    Type: Application
    Filed: September 16, 2010
    Publication date: March 24, 2011
    Inventors: Kensuke TAKANO, Katsuyuki Sekine, Yoshio Ozawa, Ryota Fujitsuka, Mitsuru Sato
  • Publication number: 20110049612
    Abstract: According to one embodiment, a nonvolatile semiconductor memory device including a semiconductor layer with a main surface, a first insulating layer formed on the main surface of the semiconductor layer, a charge storage layer formed on the first insulating layer, a second insulating layer formed on the charge storage layer, and a control gate electrode formed on the second insulating layer. At least one inelastic scattering film that reduces energy of electrons by scattering is contained in at least one of the charge storage layer and second insulating layer.
    Type: Application
    Filed: August 12, 2010
    Publication date: March 3, 2011
    Inventors: Masaaki HIGUCHI, Yoshio Ozawa, Katsuyuki Sekine, Ryota Fujitsuka
  • Patent number: 7883974
    Abstract: A method of manufacturing a semiconductor device includes forming a trench in an interlayer dielectric film on the semiconductor substrate, the trench reaching a semiconductor substrate and having a sidewall made of silicon nitride film; depositing a gate insulation film made of a HfSiO film at a temperature within a range of 200 degrees centigrade to 260 degrees centigrade, so that the HfSiO film is deposited on the semiconductor substrate which is exposed at a bottom surface of the trench without depositing the HfSiO film on the silicon nitride film; and filling the trench with a gate electrode made of metal.
    Type: Grant
    Filed: September 17, 2009
    Date of Patent: February 8, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takuya Kobayashi, Katsuyuki Sekine, Tomonori Aoyama, Hiroshi Tomita
  • Publication number: 20110012190
    Abstract: A semiconductor device includes a semiconductor substrate, a first insulating film formed on the semiconductor substrate, a charge storage layer formed on the first insulating film, a second insulating film formed on the charge storage layer, and a control electrode formed on the second insulating film, the second insulating film including a lower silicon nitride film, a lower silicon oxide film formed on the lower silicon nitride film, an intermediate insulating film formed on the lower silicon oxide film and containing a metal element, the intermediate insulating film having a relative dielectric constant of greater than 7, an upper silicon oxide film formed on the intermediate insulating film, and an upper silicon nitride film formed on the upper silicon oxide film.
    Type: Application
    Filed: September 22, 2010
    Publication date: January 20, 2011
    Inventors: Masayuki Tanaka, Daisuke Nishida, Ryota Fujitsuka, Katsuyuki Sekine, Akihito Yamamoto, Katsuaki Natori, Yoshio Ozawa
  • Patent number: 7863166
    Abstract: A method of manufacturing a semiconductor storage device includes providing an opening portion in a plurality of positions in an insulating film formed on a silicon substrate, and thereafter forming an amorphous silicon film on the insulating film, in which the opening portions are formed, and in the opening portions. Then, trenches are formed to divide the amorphous silicon film, in the vicinity of a midpoint between adjacent opening portions, into a portion on one opening portion side and a portion on the other opening portion side. Next, the amorphous silicon film, in which the trenches are formed, is annealed and subjected to solid-phase crystallization to form a single crystal with the opening portions used as seeds, and thereby a silicon single-crystal layer is formed. Then, a memory cell array is formed on the silicon single-crystal layer.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: January 4, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takashi Suzuki, Hirokazu Ishida, Ichiro Mizushima, Yoshio Ozawa, Fumiki Aiso, Katsuyuki Sekine, Takashi Nakao, Yoshihiko Saito
  • Publication number: 20100314602
    Abstract: A nonvolatile memory device includes: a first conductive layer; a second conductive layer; a first resistance change layer provided between the first conductive layer and the second conductive layer and having an electrical resistance changing with at least one of an applied electric field and a passed current; and a first lateral layer provided on a lateral surface of the first resistance change layer and having an oxygen concentration higher than an oxygen concentration in the first resistance change layer
    Type: Application
    Filed: March 22, 2010
    Publication date: December 16, 2010
    Inventors: Kensuke Takano, Yoshio Ozawa, Katsuyuki Sekine, Junichi Wada
  • Publication number: 20100288995
    Abstract: A semiconductor memory device includes: a lower electrode including a plurality of projections formed on a top surface thereof; an oxide film covering the top surface and made of an oxide of a same metal as a metal contained in the lower electrode; and a resistance variable film provided on the oxide film and being in contact with the oxide film, the projections being buried in the oxide film, and a lower layer portion of the resistance variable film having an oxygen concentration lower than an oxygen concentration of a portion other than the lower layer portion of the resistance variable film.
    Type: Application
    Filed: March 19, 2010
    Publication date: November 18, 2010
    Inventors: Yoshio Ozawa, Katsuyuki Sekine, Kazuaki Nakajima
  • Patent number: 7824976
    Abstract: A semiconductor apparatus wherein a device formed on a semiconductor substrate comprises a gate insulating film including a high dielectric constant film formed on the substrate and an anti-reaction film formed on the high dielectric constant film, and a gate electrode formed on the anti-reaction film, the high dielectric constant film comprises a film containing at least one of Hf and Zr, and Si and O, or a film containing at least one of Hf and Zr, and Si, O and N, the anti-reaction film comprises an SiO2 film, a film containing SiO2 as a main component and at least one of Hf and Zr, a film containing SiO2 as a main component and N, a film containing SiO2 as a main component, Hf and N, a film containing SiO2 as a main component, Zr and N, or a film containing SiO2 as a main component, Hf, Zr and N.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: November 2, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Akio Kaneko, Kazuhiro Eguchi, Seiji Inumiya, Katsuyuki Sekine, Motoyuki Sato
  • Patent number: 7807990
    Abstract: A semiconductor device includes: a p-channel MIS transistor including: a first insulating layer formed on a semiconductor region between a source region and a drain region, and containing at least silicon and oxygen; a second insulating layer formed on the first insulating layer, and containing hafnium, silicon, oxygen, and nitrogen, and a first gate electrode formed on the second insulating layer. The first and second insulating layers have a first and second region respectively. The first and second regions are in a 0.3 nm range in the film thickness direction from an interface between the first insulating layer and the second insulating layer. Each of the first and second regions include aluminum atoms with a concentration of 1×1020 cm?3 or more to 1×1022 cm?3 or less.
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: October 5, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masato Koyama, Yoshinori Tsuchiya, Yuuichi Kamimuta, Reika Ichihara, Katsuyuki Sekine
  • Publication number: 20100237402
    Abstract: A first select transistor is formed on a semiconductor substrate. Memory cell transistors are stacked on the first select transistor and connected in series. A second select transistor is formed on the memory cell transistors. The memory cell transistors include a tapered semiconductor pillar which increases in diameter from the first select transistor toward the second select transistor, a tunnel dielectric film formed on the side surface of the semiconductor pillar, a charge storage layer which is formed on the side surface of the tunnel dielectric film and which increases in charge trap density from the first select transistor side toward the second select transistor side, a block dielectric film formed on the side surface of the charge storage layer, and conductor films which are formed on the side surface of the block dielectric film and which serve as gate electrodes.
    Type: Application
    Filed: March 18, 2010
    Publication date: September 23, 2010
    Inventors: Katsuyuki SEKINE, Kensuke TAKANO, Masaaki HIGUCHI, Tetsuya KAI, Yoshio OZAWA
  • Patent number: 7795106
    Abstract: A semiconductor device includes a Si crystal having a crystal surface in the vicinity of a (111) surface, and an insulation film formed on said crystal surface, at least a part of said insulation film comprising a Si oxide film containing Kr or a Si nitride film containing Ar or Kr.
    Type: Grant
    Filed: October 11, 2007
    Date of Patent: September 14, 2010
    Assignees: Tokyo Electron Limited
    Inventors: Tadahiro Ohmi, Shigetoshi Sugawa, Katsuyuki Sekine, Yuji Saito
  • Publication number: 20100213534
    Abstract: In a nonvolatile semiconductor memory device provided with memory cell transistors, each of the memory cell transistors has a tunnel insulating film, a floating gate electrode, an inter-electrode insulating film, and element isolation insulating films respectively. The floating gate electrode on the tunnel insulating film is provided with a first floating gate electrode and a second floating gate electrode formed sequentially from the bottom, the second floating gate electrode being narrower in a channel-width direction than the first one. Levels of upper surfaces of the element isolation insulating films and the first floating gate electrode are the same. The inter-electrode insulating film continuously covers the upper and side surfaces of the floating gate electrode and the upper surfaces of the element isolation insulating films, and is higher in a nitrogen concentration in a boundary portion to the floating gate electrode than in boundary portions to the element isolation insulating films.
    Type: Application
    Filed: February 19, 2010
    Publication date: August 26, 2010
    Inventors: Katsuyuki SEKINE, Katsuaki Natori, Tetsuya Kai, Yoshio Ozawa
  • Publication number: 20100197130
    Abstract: A semiconductor memory device manufacturing method includes forming a floating gate electrode above a semiconductor substrate, forming an interelectrode insulating film above the floating gate electrode, forming a first radical nitride film on a surface of the interelectrode insulating film by first radical nitriding, and forming a control gate electrode on the first radical nitride film.
    Type: Application
    Filed: April 7, 2010
    Publication date: August 5, 2010
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Yoshio OZAWA, Isao Kamioka, Junichi Shiozawa, Akihito Yamamoto, Ryota Fujitsuka, Yoshihiro Ogawa, Katsuaki Natori, Katsuyuki Sekine, Masayuki Tanaka, Daisuke Nishida
  • Publication number: 20100190317
    Abstract: A semiconductor device manufacturing method has forming element isolation trenches in a semiconductor substrate, forming a silicon compound film in insides of the element isolation trenches in order to embed the element isolation trenches, conducting a first oxidation processing at a first temperature to reform a surface of the silicon compound film to a volatile matter emission preventing layer which permits passage of an oxidizing agent and impurities and which does not permit passage of a volatile matter containing silicon atoms, and conducting a second oxidation processing at a second temperature which is higher than the first temperature to form a coated silicon oxide film inside the element isolation trenches.
    Type: Application
    Filed: January 21, 2010
    Publication date: July 29, 2010
    Inventors: Kazuaki IWASAWA, Takeshi Hoshi, Keisuke Nakazawa, Shogo Matsuo, Takashi Nakao, Ryu Kato, Tetsuya Kai, Katsuyuki Sekine
  • Patent number: 7759762
    Abstract: A semiconductor device includes a Si crystal having a crystal surface in the vicinity of a (111) surface, and an insulation film formed on said crystal surface, at least a part of said insulation film comprising a Si oxide film containing Kr or a Si nitride film containing Ar or Kr.
    Type: Grant
    Filed: November 15, 2004
    Date of Patent: July 20, 2010
    Assignees: Tokyo Electron Limited
    Inventors: Tadahiro Ohmi, Shigetoshi Sugawa, Katsuyuki Sekine, Yuji Saito
  • Publication number: 20100173487
    Abstract: A semiconductor apparatus wherein a device formed on a semiconductor substrate comprises a gate insulating film including a high dielectric constant film formed on the substrate and an anti-reaction film formed on the high dielectric constant film, and a gate electrode formed on the anti-reaction film, the high dielectric constant film comprises a film containing at least one of Hf and Zr, and Si and O, or a film containing at least one of Hf and Zr, and Si, O and N, the anti-reaction film comprises an SiO2 film, a film containing SiO2 as a main component and at least one of Hf and Zr, a film containing SiO2 as a main component and N, a film containing SiO2 as a main component, Hf and N, a film containing SiO2 as a main component, Zr and N, or a film containing SiO2 as a main component, Hf, Zr and N.
    Type: Application
    Filed: December 23, 2009
    Publication date: July 8, 2010
    Inventors: Akio Kaneko, Kazuhiro Eguchi, Seiji Inumiya, Katsuyuki Sekine, Motoyuki Sato
  • Publication number: 20100159686
    Abstract: A semiconductor device according to the present invention comprises a semiconductor substrate, a gate insulating film which is composed of a material whose main component is a tetravalent metal oxide, a mixture of a tetravalent metal oxide and SiO2, or a mixture of a tetravalent metal oxide and SiON and which containing B when it is in an nMOS structure on the semiconductor substrate or containing at least one of P and As when it is in a pMOS structure on the semiconductor substrate, and a gate electrode made of a metal having a work function of 4 eV to 5.5 eV.
    Type: Application
    Filed: March 2, 2010
    Publication date: June 24, 2010
    Inventors: Akio Kaneko, Seiji Inumiya, Katsuyuki Sekine, Kazuhiro Eguchi, Motoyuki Sato
  • Publication number: 20100140682
    Abstract: In a nonvolatile semiconductor memory device, a tunnel insulating layer, a charge storage layer and a charge block layer are formed on a silicon substrate in this order, and a plurality of control gate electrodes are provided above the charge block layer. Moreover, a cap layer made of silicon nitride is formed between the charge block layer and each of the control gate electrode, the cap layer being divided for each gate control electrode.
    Type: Application
    Filed: September 21, 2009
    Publication date: June 10, 2010
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Isao KAMIOKA, Yoshio OZAWA, Katsuyuki SEKINE
  • Publication number: 20100136780
    Abstract: A method of manufacturing a semiconductor device comprising a first insulating film formed on a semiconductor substrate, a charge storage layer formed on the first insulating film, a second insulating film formed on the charge storage layer, and a control electrode formed on the second insulating film, wherein forming the second insulating film comprises forming an insulating film containing silicon using source gas not containing chlorine, and forming an insulating film containing oxygen and a metal element on the insulating film containing silicon.
    Type: Application
    Filed: January 12, 2010
    Publication date: June 3, 2010
    Inventors: Katsuaki Natori, Masayuki Tanaka, Akihito Yamamoto, Katsuyuki Sekine, Ryota Fujitsuka, Daisuke Nishida, Yoshio Ozawa