Patents by Inventor Ken Sato

Ken Sato has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10068985
    Abstract: A method for manufacturing a semiconductor substrate, the semiconductor substrate including: a substrate; an initial layer provided on the substrate; a high-resistance layer provided on the initial layer which is composed of a nitride-based semiconductor and contains carbon; and a channel layer provided on the high-resistance layer which is composed of a nitride-based semiconductor, and at a step of forming the high-resistance layer, a gradient is given to a preset temperature at which the semiconductor substrate is heated, and the high-resistance layer is formed such that the preset temperature at the start of formation of the high-resistance layer is different from the preset temperature at the end of formation of the high-resistance layer. It is possible to provide the method for manufacturing a semiconductor substrate, which can reduce a concentration gradient of carbon concentration in the high-resistance layer and also provide a desired value for the carbon concentration.
    Type: Grant
    Filed: March 5, 2015
    Date of Patent: September 4, 2018
    Assignees: SANKEN ELECTRIC CO., LTD., SHIN-ETSU HANDOTAI CO., LTD.
    Inventors: Ken Sato, Hiroshi Shikauchi, Hirokazu Goto, Masaru Shinomiya, Keitaro Tsuchiya, Kazunori Hagimoto
  • Publication number: 20180245240
    Abstract: A method for producing a semiconductor epitaxial wafer, including steps of: fabricating an epitaxial wafer by epitaxially growing a semiconductor layer on a silicon-based substrate; observing the outer edge portion of the fabricated epitaxial wafer; and removing portions in which a crack, epitaxial layer peeling, and a reaction mark observed in the step of observing are present. As a result, a method for producing a semiconductor epitaxial wafer in which a completely crack-free semiconductor epitaxial wafer can be obtained, is provided.
    Type: Application
    Filed: February 22, 2018
    Publication date: August 30, 2018
    Applicant: SHIN-ETSU HANDOTAI CO., LTD.
    Inventors: Kazunori HAGIMOTO, Masaru SHINOMIYA, Keitaro TSUCHIYA, Hirokazu GOTO, Ken SATO, Hiroshi SHIKAUCHI, Shoichi KOBAYASHI, Hirotaka KURIMOTO
  • Patent number: 10034654
    Abstract: An ultrasound unit includes a plurality of elements each including N cells, in each of which a bottom electrode and a top electrode that constitutes a membrane are arranged facing each other with a cavity therebetween, wherein the element has N1 first cells and N2 (where N1?N2, N1+N2=N) second cells having higher reception sensitivity and lower transmission sensitivity than the first cells.
    Type: Grant
    Filed: December 10, 2014
    Date of Patent: July 31, 2018
    Assignee: OLYMPUS CORPORATION
    Inventor: Ken Sato
  • Publication number: 20180200000
    Abstract: A shape calculating apparatus includes a light source, an optical fiber provided with detection targets. The detection targets have mutually different light absorption spectra to decrease a quantity of light propagated by the fiber in accordance with a bend shape of the fiber. The apparatus also includes a light detector to detect light quantity information at wavelengths included in the light absorption spectra, a calculator to execute a calculation relating to a shape of each detection target based on the light quantity information. The apparatus further includes a setting change unit to change, with respect to each of the wavelengths, a dynamic range of at least either an intensity of light input to the optical fiber or an electric signal generated by the detector.
    Type: Application
    Filed: January 12, 2018
    Publication date: July 19, 2018
    Applicant: OLYMPUS CORPORATION
    Inventors: Koichi TAKAYAMA, Hiromasa FUJITA, Ken SATO
  • Publication number: 20180204908
    Abstract: A substrate for semiconductor device includes a substrate, a buffer layer which is provided on the substrate and made of a nitride semiconductor, and a device active layer which is provided on the buffer layer and composed of a nitride semiconductor layer, wherein the buffer layer contains carbon and iron, a carbon concentration of an upper surface of the buffer layer is higher than a carbon concentration of a lower surface of the buffer layer, and an iron concentration of the upper surface of the buffer layer is lower than an iron concentration of the lower surface of the buffer layer. As a result, the substrate for semiconductor device can reduce a leak current in a lateral direction at the time of a high-temperature operation while suppressing a leak current in a longitudinal direction.
    Type: Application
    Filed: June 17, 2016
    Publication date: July 19, 2018
    Applicants: SANKEN ELECTRIC CO., LTD., SHIN-ETSU HANDOTAI CO., LTD.
    Inventors: Ken SATO, Hiroshi SHIKAUCHI, Hirokazu GOTO, Masaru SHINOMIYA, Keitaro TSUCHIYA, Kazunori HAGIMOTO
  • Patent number: 10016120
    Abstract: A curvature sensor is to be mounted along detection target to allow a curvature of the detection target. The sensor includes a light source, a light guide to guide light from the light source and sensing parts having light absorbability. The sensing parts include absorption bands having different intrinsic absorption patterns and characteristic absorption bands having intrinsic characteristic absorption patterns in the absorption bands. A light detector allows residual light not absorbed by the characteristic absorption bands to be detected, the residual light being included in light of bands corresponding to the characteristic absorption bands and radiated to the sensing parts from the light source. A calculator computes a curvature of the detection target based on a rate of change in the residual light.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: July 10, 2018
    Assignee: OLYMPUS CORPORATION
    Inventors: Hiromasa Fujita, Ken Sato
  • Patent number: 9966259
    Abstract: A silicon-based substrate on which a nitride compound semiconductor layer is formed on a front surface thereof, including a first portion provided on the front surface side which has a first impurity concentration and a second portion provided on an inner side of the first portion which has a second impurity concentration higher than the first impurity concentration, wherein the first impurity concentration being 1×1014 atoms/cm3 or more and less than 1×1019 atoms/cm3. Consequently, there is provided the silicon-based substrate in which the crystallinity of the nitride compound semiconductor layer formed on an upper side thereof can be maintained excellently while improving a warpage of the substrate.
    Type: Grant
    Filed: May 3, 2017
    Date of Patent: May 8, 2018
    Assignees: SHANKEN ELECTRIC CO., LTD., SHIN-ETSU HANDOTAI CO., LTD.
    Inventors: Hiroshi Shikauchi, Ken Sato, Hirokazu Goto, Masaru Shinomiya, Keitaro Tsuchiya, Kazunori Hagimoto
  • Patent number: 9938638
    Abstract: A method for producing a semiconductor epitaxial wafer, including steps of: fabricating an epitaxial wafer by epitaxially growing a semiconductor layer on a silicon-based substrate; observing the outer edge portion of the fabricated epitaxial wafer; and removing portions in which a crack, epitaxial layer peeling, and a reaction mark observed in the step of observing are present. As a result, a method for producing a semiconductor epitaxial wafer in which a completely crack-free semiconductor epitaxial wafer can be obtained, is provided.
    Type: Grant
    Filed: February 10, 2015
    Date of Patent: April 10, 2018
    Assignee: SHIN-ETSU HANDOTAI CO., LTD.
    Inventors: Kazunori Hagimoto, Masaru Shinomiya, Keitaro Tsuchiya, Hirokazu Goto, Ken Sato, Hiroshi Shikauchi, Shoichi Kobayashi, Hirotaka Kurimoto
  • Publication number: 20180084977
    Abstract: Sensing parts are formed in different directions in a circumferential direction in substantially a same position in the longitudinal direction thereof. Each sensing part is configured to include an optical characteristic changing member which generates the optical signals having absorption wavelength characteristic regions that vary from sensing part to sensing part by giving an optical characteristic change, which differs from that of other sensing parts, to the sensor light incident thereon in accordance with an amount of bending in a specific direction. A light detector detects the optical signals included in sensor light from a light source, which has passed through the sensing parts and undergone the optical characteristic change.
    Type: Application
    Filed: November 29, 2017
    Publication date: March 29, 2018
    Applicant: OLYMPUS CORPORATION
    Inventors: Hiromasa FUJITA, Ken SATO
  • Publication number: 20180055336
    Abstract: A bend information computation apparatus is to compute bend information representing a direction and a magnitude of bend of a target group including targets disposed at an identical position along a light guide. Each target modulates the intensity of guided light in accordance with the direction and magnitude of bend.
    Type: Application
    Filed: November 1, 2017
    Publication date: March 1, 2018
    Applicant: OLYMPUS CORPORATION
    Inventors: Ken SATO, Yasuo SASAKI, Hiromasa FUJITA
  • Patent number: 9879084
    Abstract: The present invention relates to VEGF-binding agents, DLL4-binding agents, VEGF/DLL4 bispecific binding agents, and methods of using the agents for treating diseases such as cancer. The present invention provides antibodies that specifically bind human VEGF, antibodies that specifically bind human DLL4, and bispecific antibodies that specifically bind human VEGF and/or human DLL4. The present invention further provides methods of using the agents to inhibit tumor growth. Also described are methods of treating cancer comprising administering a therapeutically effect amount of an agent or antibody of the present invention to a patient having a tumor or cancer.
    Type: Grant
    Filed: January 9, 2017
    Date of Patent: January 30, 2018
    Assignee: ONCOMED PHARMACEUTICALS, INC.
    Inventors: Austin L. Gurney, Aaron Ken Sato, Christopher John Bond
  • Patent number: 9876101
    Abstract: A semiconductor substrate including a substrate, a buffer layer having a nitride-based semiconductor containing carbon provided on the substrate, a high-resistance layer having a nitride-based semiconductor containing carbon provided on the buffer layer, and a channel layer having a nitride-based semiconductor provided on the high-resistance layer, the high-resistance layer including a first region having carbon concentration lower than that of the buffer layer, and a second region which is provided between the first region and the channel layer, and has the carbon concentration higher than the first region.
    Type: Grant
    Filed: March 12, 2015
    Date of Patent: January 23, 2018
    Assignees: SANKEN ELECTRIC CO., LTD., SHIN-ETSU HANDOTAI CO., LTD
    Inventors: Ken Sato, Hiroshi Shikauchi, Hirokazu Goto, Masaru Shinomiya, Kazunori Hagimoto, Keitaro Tsuchiya
  • Publication number: 20170352537
    Abstract: An epitaxial substrate for electronic devices, including: a Si-based substrate; an AlN initial layer provided on the Si-based substrate; and a buffer layer provided on the AlN initial layer, wherein the roughness Sa of the surface of the AlN initial layer on the side where the buffer layer is located is 4 nm or more. As a result, an epitaxial substrate for electronic devices, in which V pits in a buffer layer structure can be suppressed and longitudinal leakage current characteristics can be improved when an electronic device is fabricated therewith, is provided.
    Type: Application
    Filed: December 18, 2015
    Publication date: December 7, 2017
    Applicants: SHIN-ETSU HANDOTAI CO., LTD., SANKEN ELECTRIC CO., LTD.
    Inventors: Kazunori HAGIMOTO, Masaru SHINOMIYA, Keitaro TSUCHIYA, Hirokazu GOTO, Ken SATO, Hiroshi SHIKAUCHI
  • Publication number: 20170323960
    Abstract: An epitaxial wafer including: a silicon-based substrate; a first buffer layer on the substrate and including a first multilayer structure buffer region composed of AlxGa1-xN layers and AlyGa1-yN layers (x>y) alternately disposed and a first insertion layer composed of an AlzGa1-zN layer (x>z) and is thicker than the AlyGa1-yN layer, the first regions and insertion layers alternately disposed; a second buffer layer on the first and including a second multilayer structure buffer region composed of Al?Ga1-?N layers and Al?Ga1-?N layers (?>?) alternately disposed and a second insertion layer composed of an Al?Ga1-?N layer (?>?) and is thicker than the Al?Ga1-?N layer, the second regions and insertion layers alternately disposed; and a channel layer on the second buffer layer and thicker than the second insertion layer. The average Al composition in the second buffer layer is higher than that in the first.
    Type: Application
    Filed: November 6, 2015
    Publication date: November 9, 2017
    Applicants: SANKEN ELECTRIC CO., LTD., SHIN-ETSU HANDOTAI CO., LTD.
    Inventors: Ken SATO, Hiroshi SHIKAUCHI, Hirokazu GOTO, Masaru SHINOMIYA, Keitaro TSUCHIYA, Kazunori HAGIMOTO
  • Patent number: 9757009
    Abstract: A capsule endoscope includes, inside a capsule casing, an information acquiring section that acquires information on an inside of a body of a subject, a battery that supplies power, a detection section that, upon detection of introduction to the inside of the body of the subject, outputs a detection signal, a signal receiving section that receives a control signal from an outside and outputs an internal signal, and a control section that controls power supply from the battery to the information acquiring section according to the internal signal and the detection signal.
    Type: Grant
    Filed: April 8, 2013
    Date of Patent: September 12, 2017
    Assignee: OLYMPUS CORPORATION
    Inventors: Ken Sato, Fukashi Yoshizawa, Naohito Doi
  • Publication number: 20170239001
    Abstract: Example embodiments of the present invention relate to systems methods and computer program products for bend estimation. The system comprises a first and second light absorbers disposed at a substantially same position along an axis of a light guide and enabled to absorb first and second respective amounts of a plurality of wavelengths of a light transmitted along the light guide, a light detector enabled to detect respective intensities of the plurality of wavelengths of the light not absorbed by the first and second light absorbers, and a processor enabled to calculate a bend state of the light guide according to the detected intensities of the plurality of wavelengths of the light.
    Type: Application
    Filed: May 10, 2017
    Publication date: August 24, 2017
    Applicant: Olympus Corporation
    Inventors: Ken Sato, Hiromasa Fujita
  • Publication number: 20170234854
    Abstract: Novel anti-cancer agents, including, but not limited to, antibodies and other polypeptides, that bind to human frizzled receptors are provided. Novel epitopes within the human frizzled receptors which are suitable as targets for anti-cancer agents are also identified. Methods of using the agents or antibodies, such as methods of using the agents or antibodies to inhibit Wnt signaling and/or inhibit tumor growth are further provided. Screening methods are also provided.
    Type: Application
    Filed: December 19, 2016
    Publication date: August 17, 2017
    Inventors: AUSTIN L. GURNEY, AARON KEN SATO, FUMIKO TAKADA AXELROD, TIMOTHY CHARLES HOEY, SANJEEV H. SATYAL, SATYAJIT SUJIT KUMAR MITRA
  • Publication number: 20170236711
    Abstract: A silicon-based substrate on which a nitride compound semiconductor layer is formed on a front surface thereof, including a first portion provided on the front surface side which has a first impurity concentration and a second portion provided on an inner side of the first portion which has a second impurity concentration higher than the first impurity concentration, wherein the first impurity concentration being 1×1014 atoms/cm3 or more and less than 1×1019 atoms/cm3. Consequently, there is provided the silicon-based substrate in which the crystallinity of the nitride compound semiconductor layer formed on an upper side thereof can be maintained excellently while improving a warpage of the substrate.
    Type: Application
    Filed: May 3, 2017
    Publication date: August 17, 2017
    Applicants: SANKEN ELECTRIC CO., LTD., SHIN-ETSU HANDOTAI CO. LTD.
    Inventors: Hiroshi SHIKAUCHI, Ken SATO, Hirokazu GOTO, Masaru SHINOMIYA, Keitaro TSUCHIYA, Kazunori HAGIMOTO
  • Publication number: 20170198031
    Abstract: The present invention relates to Notch-binding agents and Notch antagonists and methods of using the agents and/or antagonists for treating diseases such as cancer. The present invention provides antibodies that specifically bind to a non-ligand binding region of the extracellular domain of one or more human Notch receptor, such as Notch2 and/or Notch3, and inhibit tumor growth. The present invention further provides methods of treating cancer, the methods comprising administering a therapeutically effective amount of an antibody that specifically binds to a non-ligand binding region of the extracellular domain of a human Notch receptor protein and inhibits tumor growth.
    Type: Application
    Filed: October 20, 2016
    Publication date: July 13, 2017
    Applicant: OncoMed Pharmaceuticals, Inc.
    Inventors: Austin L. GURNEY, Timothy Charles HOEY, Edward Thein Htun van der HORST, Aaron Ken SATO, Yuan Ching LIU, Maureen Fitch BRUHNS, John A. LEWICKI
  • Publication number: 20170183406
    Abstract: The present invention relates to VEGF-binding agents, DLL4-binding agents, VEGF/DLL4 bispecific binding agents, and methods of using the agents for treating diseases such as cancer. The present invention provides antibodies that specifically bind human VEGF, antibodies that specifically bind human DLL4, and bispecific antibodies that specifically bind human VEGF and/or human DLL4. The present invention further provides methods of using the agents to inhibit tumor growth. Also described are methods of treating cancer comprising administering a therapeutically effect amount of an agent or antibody of the present invention to a patient having a tumor or cancer.
    Type: Application
    Filed: January 9, 2017
    Publication date: June 29, 2017
    Inventors: Austin L. GURNEY, Aaron Ken Sato, Christopher John Bond