Patents by Inventor Ki-yeon Park

Ki-yeon Park has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090250741
    Abstract: A semiconductor device and/or gate structure having a composite dielectric layer and methods of manufacturing the same is provided. In the semiconductor device, gate structure, and methods provided, a first conductive layer may be formed on a substrate. A native oxide layer formed on the first conductive layer may be removed. A surface of the first conductive layer may be nitrided so that the surface may be altered into a nitride layer. A composite dielectric layer including the first and/or second dielectric layers may be formed on the nitride layer. A second conductive layer may be formed on the composite dielectric layer. The first dielectric layer may include a material having a higher dielectric constant. The second dielectric layer may be capable of suppressing crystallization of the first dielectric layer.
    Type: Application
    Filed: June 9, 2009
    Publication date: October 8, 2009
    Inventors: Ki-Yeon Park, Kyoung-Ryul Yoon, Dae-Sik Choi, Han-Mei Choi, Seung-Hwan Lee
  • Patent number: 7566608
    Abstract: Methods of forming a zirconium hafnium oxide thin layer on a semiconductor substrate by supplying tetrakis(ethylmethylamino)zirconium ([Zr{N(C2H5)(CH3)}4], TEMAZ) and tetrakis(ethylmethylamino)hafnium ([Hf{N(C2H5)(CH3)}4], TEMAH) to a substrate are provided. The TEMAZ and the TEMAH may be reacted with an oxidizing agent. The thin layer including zirconium hafnium oxide may be used for a gate insulation layer in a gate structure, a dielectric layer in a capacitor, or a dielectric layer in a flash memory device.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: July 28, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dae-Sik Choi, Kyoung-Ryul Yoon, Han-Mei Choi, Ki-Yeon Park, Seung-Hwan Lee, Sung-Tae Kim, Young-Sun Kim, Cha-Young Yoo
  • Patent number: 7560349
    Abstract: A semiconductor device and/or gate structure having a composite dielectric layer and methods of manufacturing the same is provided. In the semiconductor device, gate structure, and methods provided, a first conductive layer may be formed on a substrate. A native oxide layer formed on the first conductive layer may be removed. A surface of the first conductive layer may be nitrided so that the surface may be altered into a nitride layer. A composite dielectric layer including the first and/or second dielectric layers may be formed on the nitride layer. A second conductive layer may be formed on the composite dielectric layer. The first dielectric layer may include a material having a higher dielectric constant. The second dielectric layer may be capable of suppressing crystallization of the first dielectric layer.
    Type: Grant
    Filed: March 3, 2006
    Date of Patent: July 14, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ki-Yeon Park, Kyoung-Ryul Yoon, Dae-Sik Choi, Han-Mei Choi, Seung-Hwan Lee
  • Publication number: 20090159955
    Abstract: A nonvolatile memory device includes a semiconductor substrate, a tunneling insulation layer on the semiconductor substrate, a charge storage layer on the tunneling insulation layer, an inter-electrode insulation layer on the charge storage layer, and a control gate electrode on the inter-electrode insulation layer. The inter-electrode insulation layer includes a high-k dielectric layer having a dielectric constant greater than that of a silicon nitride, and an interfacial layer between the charge storage layer and the high-k dielectric layer. The interfacial layer includes a silicon oxynitride layer.
    Type: Application
    Filed: September 23, 2008
    Publication date: June 25, 2009
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sung-hae LEE, Ki-yeon PARK, Min-Kyung RYU, Myoung-bum LEE, Jun-noh LEE
  • Publication number: 20090127611
    Abstract: A non-volatile memory device includes a semiconductor layer including source and drain regions and a channel region between the source and drain regions; a tunneling insulating layer on the channel region of the semiconductor layer; a charge storage layer on the tunneling insulating layer; a blocking insulating layer on the charge storage layer and including a first oxide layer with a first thickness, a high-k dielectric layer, and a second oxide layer with a second thickness different from the first thickness that are stacked sequentially on the charge storage layer; and a control gate on the blocking insulating layer.
    Type: Application
    Filed: May 14, 2008
    Publication date: May 21, 2009
    Inventors: Ki-yeon Park, Cha-young Yoo, Sung-hae Lee, Jun-noh Lee, Min-kyung Ryu
  • Publication number: 20090085160
    Abstract: Provided is a semiconductor device including an insulating layer of a cubic system or a tetragonal system, having good electrical characteristics. The semiconductor device includes a semiconductor substrate including an active region, a transistor that is formed in the active region of the semiconductor substrate, an interlevel insulating layer that is formed on the semiconductor substrate and a contact plug that is formed in the interlevel insulating layer and that is electrically connected to the transistor. The semiconductor device may include a lower electrode that is formed on the interlevel insulating layer and that is electrically connected to the contact plug, an upper electrode that is formed on the lower electrode and an insulating layer of a cubic system or a tetragonal system including a metal silicate layer. The insulating layer may be formed between the lower electrode and the upper electrode.
    Type: Application
    Filed: September 26, 2008
    Publication date: April 2, 2009
    Inventors: Jong-cheol Lee, Jun-noh Lee, Ki-vin Im, Ki-yeon Park, Sung-hae Lee, Sang-yeol Kang
  • Patent number: 7510931
    Abstract: A method of fabricating a nonvolatile memory device includes forming a charge tunneling layer on a semiconductor substrate, forming a charge trapping layer on the charge tunneling layer, forming a first charge blocking layer on the charge trapping layer by supplying a metal source gas and a first oxidizing gas onto the charge trapping layer, forming a second charge blocking layer on the first charge blocking layer by supplying a metal source gas and a second oxidizing gas onto the first charge blocking layer, wherein the second oxidizing gas has a higher oxidizing power as compared to the first oxidizing gas, and forming a gate electrode layer on the second charge blocking layer.
    Type: Grant
    Filed: November 29, 2006
    Date of Patent: March 31, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ki-yeon Park, Han-mei Choi, Seung-hwan Lee, Sung-tae Kim, Young-sun Kim
  • Patent number: 7425493
    Abstract: A capacitor including a dielectric structure, a lower electrode may be formed on a substrate. The dielectric structure may be formed on the lower electrode, and may include a first thin film, which may improve a morphology of the dielectric structure, and a second thin film, which may have at least one of an EOT larger than that of the first thin film and a dielectric constant higher than that of the first thin film. An upper electrode may be formed on the dielectric structure, and the dielectric structure may have an improved morphology and/or a higher dielectric constant.
    Type: Grant
    Filed: February 17, 2005
    Date of Patent: September 16, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kyoung-Ryul Yoon, Han-Mei Choi, Seung-Hwan Lee, Dae-Sik Choi, Ki-Yeon Park, Young-Sun Kim, Sung-Tae Kim, Cha-Young You
  • Patent number: 7402491
    Abstract: A method of manufacturing a semiconductor device can include forming a tunnel oxide layer on a substrate, forming a floating gate on the tunnel oxide layer and forming a dielectric layer pattern on the floating gate using an ALD process. The dielectric layer pattern can include a metal precursor that includes zirconium and an oxidant. A control gate can be formed on the dielectric layer pattern. The semiconductor device can include the dielectric layer pattern provided herein.
    Type: Grant
    Filed: October 28, 2005
    Date of Patent: July 22, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Han-Mei Choi, Kyoung-Ryul Yoon, Seung-Hwan Lee, Ki-Yeon Park, Sung-Tae Kim, Young-Sun Kim, Cha-Young Yoo
  • Publication number: 20080096349
    Abstract: A method of fabricating a nonvolatile memory device includes forming a charge tunneling layer on a semiconductor substrate, forming a charge trapping layer on the charge tunneling layer, forming a first charge blocking layer on the charge trapping layer by supplying a metal source gas and a first oxidizing gas onto the charge trapping layer, forming a second charge blocking layer on the first charge blocking layer by supplying a metal source gas and a second oxidizing gas onto the first charge blocking layer, wherein the second oxidizing gas has a higher oxidizing power as compared to the first oxidizing gas, and forming a gate electrode layer on the second charge blocking layer.
    Type: Application
    Filed: November 29, 2006
    Publication date: April 24, 2008
    Inventors: Ki-yeon Park, Han-mei Choi, Seung-hwan Lee, Sung-tae Kim, Young-sun Kim
  • Publication number: 20080090353
    Abstract: A method of manufacturing a non-volatie memory device includes forming a tunnel insulating layer on a substrate, forming a conductive pattern on the tunnel insulating layer, forming a lower dielectric layer on the conductive pattern, performing a first heat treatment process to density the lower dielectric layer, and forming a middle dielectric layer having an energy band gap smaller than that of the lower dielectric layer on the first heat-treated lower dielectric layer. The method further includes forming an upper dielectric layer including a material substantially identical to that of the lower dielectric layer on the middle dielectric layer, performing a second heat treatment process to densify the middle dielectric layer and the upper dielectric layer and forming a conductive layer on the second heat-treated upper dielectric layer.
    Type: Application
    Filed: September 21, 2007
    Publication date: April 17, 2008
    Inventors: Ki-Yeon Park, Sun-Jung Kim, Min-Kyung Ryu, Seung-Hwan Lee, Han-Mei Choi
  • Publication number: 20080061360
    Abstract: In a non-volatile memory device and a method of manufacturing the non-volatile memory device, a tunnel insulating layer, a charge trapping layer, a dielectric layer and a conductive layer may be sequentially formed on a channel region of a substrate. The conductive layer may be patterned to form a gate electrode and spacers may be formed on sidewalls of the gate electrode. A dielectric layer pattern, a charge trapping layer pattern, and a tunnel insulating layer pattern may be formed on the channel region by an anisotropic etching process using the spacers as an etch mask. Sidewalls of the charge trapping layer pattern may be removed by an isotropic etching process to reduce the width thereof. Thus, the likelihood of lateral diffusion of electrons may be reduced or prevented in the charge trapping layer pattern and high temperature stress characteristics of the non-volatile memory device may be improved.
    Type: Application
    Filed: September 7, 2007
    Publication date: March 13, 2008
    Inventors: Se-Hoon Oh, Young-Geun Park, Han-Mei Choi, Seung-Hwan Lee, Ki-Yeon Park, Sun-Jung Kim
  • Publication number: 20070259212
    Abstract: The present invention provides methods of forming metal thin films, lanthanum oxide films and high dielectric films. Compositions of metal thin films, lanthanum oxide films and high dielectric films are also provided. Further provided are semiconductor devices comprising the metal thin films, lanthanum oxide films and high dielectric films provided herein.
    Type: Application
    Filed: July 16, 2007
    Publication date: November 8, 2007
    Inventors: Ki-yeon Park, Sung-tae Kim, Young-sun Kim, In-sung Park, Jae-hyun Yeo, Yun-jung Lee, Ki-vin Im
  • Patent number: 7279392
    Abstract: A thin film structure and a capacitor using the film structure and methods for forming the same. The thin film structure may include a first film formed on a substrate using a first reactant and an oxidant for oxidizing the first reactant. A second film may be formed on the first film to suppress crystallization of the first film. A capacitor may include a dielectric layer, which may further include the first thin film and the second thin film.
    Type: Grant
    Filed: February 1, 2005
    Date of Patent: October 9, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seung-Hwan Lee, Kyoung-Ryul Yoon, Han-Mei Choi, Dae-Sik Choi, Ki-Yeon Park, Sung-Tae Kim, Young-Sun Kim, Cha-Young Yoo
  • Patent number: 7151039
    Abstract: In a method of forming an oxide layer using an atomic layer deposition and a method of forming a capacitor of a semiconductor device using the same, a precursor including an amino functional group is introduced onto a substrate to chemisorb a portion of the precursor on the substrate. Then, the non-chemisorbed precursor is removed. Thereafter, an oxidant is introduced onto the substrate to chemically react the chemisorbed precursor with the oxidant to form an oxide layer on the substrate. A deposition rate is fast and an oxide layer having a good deposition characteristic may be obtained. Also, a thin oxide film having a good step coverage and a decreased pattern loading rate can be formed.
    Type: Grant
    Filed: August 4, 2003
    Date of Patent: December 19, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yun-Jung Lee, In-Sung Park, Gi-Vin Im, Ki-Yeon Park, Jae-Hyun Yeo
  • Publication number: 20060252281
    Abstract: A semiconductor device and/or gate structure having a composite dielectric layer and methods of manufacturing the same is provided. In the semiconductor device, gate structure, and methods provided, a first conductive layer may be formed on a substrate. A native oxide layer formed on the first conductive layer may be removed. A surface of the first conductive layer may be nitrided so that the surface may be altered into a nitride layer. A composite dielectric layer including the first and/or second dielectric layers may be formed on the nitride layer. A second conductive layer may be formed on the composite dielectric layer. The first dielectric layer may include a material having a higher dielectric constant. The second dielectric layer may be capable of suppressing crystallization of the first dielectric layer.
    Type: Application
    Filed: March 3, 2006
    Publication date: November 9, 2006
    Inventors: Ki-Yeon Park, Kyoung-Ryul Yoon, Dae-Sik Choi, Han-Mei Choi, Seung-Hwan Lee
  • Publication number: 20060240679
    Abstract: A method of manufacturing a semiconductor device comprises forming a lower electrode on a substrate using a titanium chloride pulsed deposition (TPD) process, forming a high-k dielectric layer on the lower electrode, and forming an upper electrode on the dielectric layer using a TPD process. The method further comprises forming a reaction barrier layer between the upper or lower electrode and the dielectric layer using an atomic layer deposition (ALD) process. The upper electrode is preferably formed with a processing temperature between 350 and 500° C., and the dielectric layer preferably comprises zirconium oxide.
    Type: Application
    Filed: April 14, 2006
    Publication date: October 26, 2006
    Inventors: Seung-Hwan Lee, Kyoung-Ryul Yoon, Han-Mei Choi, Ki-Yeon Park, Young-Sun Kim
  • Publication number: 20060220106
    Abstract: In a gate structure of a non-volatile memory device is formed, a tunnel insulating layer and a charge trapping layer are formed on a substrate. A composite dielectric layer is formed on the charge trapping layer and has a laminate structure in which first material layers including aluminum oxide and second material layers including hafnium oxide or zirconium oxide are alternately stacked. A conductive layer is formed on the composite dielectric layer and then a gate structure is formed by patterning the conductive layer, the composite dielectric layer, the charge trapping layer, and the tunnel insulating layer.
    Type: Application
    Filed: March 15, 2006
    Publication date: October 5, 2006
    Inventors: Han-Mei Choi, Kyoung-Ryul Yoon, Seung-Hwan Lee, Ki-Yeon Park, Young-Sun Kim
  • Patent number: 7094712
    Abstract: Disclosed is a method for forming metal oxide dielectric layers, more particularly HfO2 dielectric layers, using an atomic layer deposition (ALD) method in which a series of thin intermediate layers are formed and treated with one or more oxidizers and nitrogents before the next intermediate layer is formed on the substrate. The intermediate oxidation treatments reduce the number of organic contaminants incorporated into the metal oxide layer from the organometallic precursors to produce a dielectric layer having improved current leakage characteristics. The dielectric layers formed in this manner remain susceptible to crystallization if exposed to temperatures much above 550° C., so subsequent semiconductor manufacturing processes should be modified or eliminated to avoid such temperatures or limit the duration at such temperatures to maintain the performance of the dielectric materials.
    Type: Grant
    Filed: March 8, 2004
    Date of Patent: August 22, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ki-Vin Im, Ki-Yeon Park, Jae-Hyun Yeo, In-Sung Park, Seung-Hwan Lee, Young-Sun Kim, Sung-Tae Kim
  • Publication number: 20060141695
    Abstract: Methods of forming a zirconium hafnium oxide thin layer on a semiconductor substrate by supplying tetrakis(ethylmethylamino)zirconium ([Zr{N(C2H5)(CH3)}4], TEMAZ) and tetrakis(ethylmethylamino)hafnium ([Hf{N(C2H5)(CH3)}4], TEMAH) to a substrate are provided. The TEMAZ and the TEMAH may be reacted with an oxidizing agent. The thin layer including zirconium hafnium oxide may be used for a gate insulation layer in a gate structure, a dielectric layer in a capacitor, or a dielectric layer in a flash memory device.
    Type: Application
    Filed: November 22, 2005
    Publication date: June 29, 2006
    Inventors: Dae-Sik Choi, Kyoung-Ryul Yoon, Han-Mei Choi, Ki-Yeon Park, Seung-Hwan Lee, Sung-Tae Kim, Young-Sun Kim, Cha-Young Yoo