Patents by Inventor Koichi Motoyama

Koichi Motoyama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210134664
    Abstract: Embodiments of the present invention are directed to fabrication methods and resulting structures for subtractively forming a top via using a hybrid metallization scheme. In a non-limiting embodiment of the invention, a surface of a conductive line is recessed below a topmost surface of a first liner layer. The first liner layer can be positioned between the conductive line and a dielectric layer. A top via layer is formed on the recessed surface of the conductive line and a hard mask is formed over a first portion of the top via layer. A second portion of the top via layer is removed. The remaining first portion of the top via layer defines the top via. The conductive line can include copper while the top via layers can include ruthenium or cobalt.
    Type: Application
    Filed: November 4, 2019
    Publication date: May 6, 2021
    Inventors: Koichi Motoyama, Nicholas Anthony Lanzillo, Christopher J. Penny, SOMNATH GHOSH, Robert ROBISON, Lawrence A. Clevenger
  • Publication number: 20210118732
    Abstract: A method is presented for forming self-aligned vias by employing top level line double patterns. The method includes forming a plurality of first conductive lines within a first dielectric material, recessing one or more of the plurality of first conductive lines to define first openings, filling the first openings with a second dielectric material, and forming sacrificial blocks perpendicular to the plurality of first conductive lines. The method further includes forming vias directly underneath the sacrificial blocks, removing the sacrificial blocks, and constructing a plurality of second conductive lines such that the vias align to both the plurality of first conductive lines and the plurality of second conductive lines.
    Type: Application
    Filed: October 22, 2019
    Publication date: April 22, 2021
    Inventors: Shyng-Tsong Chen, Terry A. Spooner, Koichi Motoyama, Chih-Chao Yang
  • Publication number: 20210118722
    Abstract: A semiconductor structure includes a substrate. A first metallization layer is disposed on the substrate. A second metallization layer is disposed on the first metallization layer and having one or more openings, wherein at least one of the one or more openings is configured to expose a top surface of the first metallization layer. A polymer-adhering liner layer is disposed on sidewalls of the at least one of the one more openings in the second metallization layer. A dielectric polymer is disposed in the at least one of the one or more openings in the second metallization layer and on the polymer-adhering liner layer. The dielectric polymer is configured to seal an air gap in the dielectric polymer.
    Type: Application
    Filed: December 24, 2020
    Publication date: April 22, 2021
    Inventors: Kenneth Chun Kuen Cheng, Koichi Motoyama, Oscar Van der Straten, Joseph F. Maniscalco, Chih-Chao Yang
  • Publication number: 20210111069
    Abstract: Embodiments of the present invention are directed to fabrication method and resulting structures for forming interconnects using a conductive spacer configured to prevent a short between a via and an adjacent line. In a non-limiting embodiment of the invention, a first conductive line and a second conductive line are formed in a metallization layer. A conductive spacer is formed on the first conductive line and a conductive via is formed on a surface of the conductive spacer. The conductive via is positioned such that the conductive spacer is between the first conductive line and the conductive via. A height of the conductive spacer is selected to provide a predetermined distance from the conductive via to the second conductive line. The predetermined distance from the conductive via to the second conductive line is sufficient to prevent a short between the conductive via and the second conductive line.
    Type: Application
    Filed: October 10, 2019
    Publication date: April 15, 2021
    Inventors: Koichi Motoyama, Cornelius Brown Peethala, Christopher J. Penny, Nicholas Anthony Lanzillo, Lawrence A. Clevenger
  • Publication number: 20210098293
    Abstract: Integrated chips and methods of forming the same include forming a lower conductive line over an underlying layer. An upper conductive via is formed over the lower conducting lines. An encapsulating layer is formed on the lower conductive line and the upper conductive via using a treatment process that converts an outermost layer of the lower conductive line and the upper conductive via into the encapsulating layer.
    Type: Application
    Filed: October 1, 2019
    Publication date: April 1, 2021
    Inventors: Oscar van der Straten, Kenneth C. K. Cheng, Joseph F. Maniscalco, Koichi Motoyama
  • Publication number: 20210098284
    Abstract: Integrated chips and methods of forming the same include forming upper dummy lines over lower conductive lines. The lower conductive lines are recessed to form conductive vias between the lower conductive lines and the upper dummy lines. The upper dummy lines are replaced with upper conductive lines that contact the conductive vias.
    Type: Application
    Filed: September 27, 2019
    Publication date: April 1, 2021
    Inventors: Chanro Park, Koichi Motoyama, Kenneth C. K. Cheng, Chih-Chao Yang
  • Publication number: 20210098287
    Abstract: Techniques are provided to fabricate semiconductor devices. For example, a method includes forming a lower level interconnect line having a first hardmask layer thereon and embedded in a lower level dielectric layer. The first hardmask layer is removed to form a first opening having a first width in the lower level dielectric layer. The sidewalls of the lower level dielectric layer are etched in the first openings to form a second opening having a second width. The second width is greater than the first width. An upper level interconnect line is formed on the lower level interconnect line.
    Type: Application
    Filed: October 1, 2019
    Publication date: April 1, 2021
    Inventors: Chanro Park, Kenneth Chun Kuen Cheng, Koichi Motoyama, Chih-Chao Yang
  • Publication number: 20210098388
    Abstract: Techniques to enable bottom barrier free interconnects without voids. In one aspect, a method of forming interconnects includes: forming metal lines embedded in a dielectric; depositing a sacrificial dielectric over the metal lines; patterning vias and trenches in the sacrificial dielectric down to the metal lines, with the trenches positioned over the vias; lining the vias and trenches with a barrier layer; depositing a conductor into the vias and trenches over the barrier layer to form the interconnects; forming a selective capping layer on the interconnects; removing the sacrificial dielectric in its entirety; and depositing an interlayer dielectric (ILD) to replace the sacrificial dielectric. An interconnect structure is also provided.
    Type: Application
    Filed: September 28, 2019
    Publication date: April 1, 2021
    Inventors: Kenneth Chun Kuen Cheng, Koichi Motoyama, Kisik Choi, Cornelius Brown Peethala, Hosadurga Shobha, Joe Lee
  • Publication number: 20210090942
    Abstract: Back end of line metallization structures and methods for fabricating self-aligned vias. The structures generally include a first interconnect structure disposed above a substrate. The first interconnect structure includes a metal line formed in a first interlayer dielectric. A second interconnect structure overlies the first interconnect structure. The second interconnect structure includes a second cap layer on the first interlayer dielectric, a second interlayer dielectric thereon, and at least one self-aligned via in the second interlayer dielectric conductively coupled to at least a portion of the metal line of the first interconnect structure, wherein any misalignment of the at least one self-aligned via results in the at least one self-aligned via landing on both the metal line of the first interconnect structure and the second cap layer. The second cap layer is an insulating material.
    Type: Application
    Filed: September 19, 2019
    Publication date: March 25, 2021
    Inventors: Chih-Chao Yang, Terry A. Spooner, Koichi Motoyama, Shyng-Tsong Chen
  • Publication number: 20210090938
    Abstract: A method for making a semiconductor structure includes forming a metallization layer on a substrate. The method further includes forming a dielectric layer on the metallization layer. The method further includes forming one or more openings in the dielectric layer and the metallization layer exposing a top surface of the substrate. The method further includes forming a polymer-adhering liner layer on sidewalls of the dielectric layer in the one or more openings. The method further includes selectively depositing a dielectric polymer in at least a top portion of the one or more openings and on the polymer-adhering liner layer. The dielectric polymer seals an air gap positioned between a bottom surface of the dielectric polymer and a top surface of the substrate.
    Type: Application
    Filed: September 19, 2019
    Publication date: March 25, 2021
    Inventors: Kenneth Chun Kuen Cheng, Koichi Motoyama, Oscar van der Straten, Joseph F. Maniscalco, Chih-Chao Yang
  • Patent number: 10957646
    Abstract: A semiconductor wafer has a top surface, a dielectric insulator, a plurality of narrow copper wires, a plurality of wide copper wires, an optical pass through layer over the top surface, and a self-aligned pattern in a photo-resist layer. The plurality of wide copper wires and the plurality of narrow copper wires are embedded in a dielectric insulator. The width of each wide copper wire is greater than the width of each narrow copper. An optical pass through layer is located over the top surface. A self-aligned pattern in a photo-resist layer, wherein photo-resist exists only in areas above the wide copper wires, is located above the optical pass through layer.
    Type: Grant
    Filed: February 5, 2020
    Date of Patent: March 23, 2021
    Assignee: International Business Machines Corporation
    Inventors: Benjamin D. Briggs, Cornelius Brown Peethala, Michael Rizzolo, Koichi Motoyama, Gen Tsutsui, Ruqiang Bao, Gangadhara Raja Muthinti, Lawrence A. Clevenger
  • Publication number: 20210082744
    Abstract: Techniques for forming trapezoidal-shaped interconnects are provided. In one aspect, a method for forming an interconnect structure includes: patterning a trench(es) in a dielectric having a V-shaped profile with a rounded bottom; depositing a liner into the trench(es) using PVD which opens-up the trench(es) creating a trapezoidal-shaped profile in the trench(es); removing the liner from the trench(es) selective to the dielectric whereby, following the removing, the trench(es) having the trapezoidal-shaped profile remains in the dielectric; depositing a conformal barrier layer into and lining the trench(es) having the trapezoidal-shaped profile; depositing a conductor into and filling the trench(es) having the trapezoidal-shaped profile over the conformal barrier layer; and polishing the conductor and the conformal barrier layer down to the dielectric. An interconnect structure is also provided.
    Type: Application
    Filed: September 17, 2019
    Publication date: March 18, 2021
    Inventors: Nicholas Anthony Lanzillo, Hosadurga Shobha, Huai Huang, Junli Wang, Koichi Motoyama, Christopher J. Penny, Lawrence A. Clevenger
  • Patent number: 10950493
    Abstract: A method for making a semiconductor structure includes forming a metallization layer on a substrate. The method further includes forming a dielectric layer on the metallization layer. The method further includes forming one or more openings in the dielectric layer and the metallization layer exposing a top surface of the substrate. The method further includes forming a polymer-adhering liner layer on sidewalls of the dielectric layer in the one or more openings. The method further includes selectively depositing a dielectric polymer in at least a top portion of the one or more openings and on the polymer-adhering liner layer. The dielectric polymer seals an air gap positioned between a bottom surface of the dielectric polymer and a top surface of the substrate.
    Type: Grant
    Filed: September 19, 2019
    Date of Patent: March 16, 2021
    Assignee: International Business Machines Corporation
    Inventors: Kenneth Chun Kuen Cheng, Koichi Motoyama, Oscar van der Straten, Joseph F. Maniscalco, Chih-Chao Yang
  • Publication number: 20210043507
    Abstract: A method includes patterning an interconnect trench in a dielectric layer. The interconnect trench has sidewalk and a bottom surface. A liner layer is deposited on the sidewalls and the bottom surface of the interconnect trench. The interconnect trench is filled with a first conductive metal material. The conducting metal material is recessed to below a top surface of the dielectric layer. A cap layer is deposited on a top surface of the first conductive metal material. The cap layer and the liner layer are of the same material. The method further includes forming a via on a portion of the interconnect trench.
    Type: Application
    Filed: August 9, 2019
    Publication date: February 11, 2021
    Inventors: Koichi Motoyama, Nicholas Anthony Lanzillo, Christopher J. Penny, Somnath Ghosh, Robert Robison, Lawrence A. Clevenger
  • Publication number: 20210035904
    Abstract: Chamfer-less via interconnects and techniques for fabrication thereof with a protective dielectric arch are provided. In one aspect, a method of forming an interconnect includes: forming metal lines in a first dielectric; depositing an etch stop liner onto the first dielectric; depositing a second dielectric on the etch stop liner; patterning vias and a trench in the second dielectric, wherein the vias are present over at least one of the metal lines, and wherein the patterning forms patterned portions of the second dielectric/etch stop liner over at least another one of the metal lines; forming a protective dielectric arch over the at least another one of the metal lines; and filling the vias/trench with a metal(s) to form the interconnect which, due to the protective dielectric arch, is in a non-contact position with the at least another one of the metal lines. An interconnect structure is also provided.
    Type: Application
    Filed: July 31, 2019
    Publication date: February 4, 2021
    Inventors: Lawrence A. Clevenger, Koichi Motoyama, Gangadhara Raja Muthinti, Cornelius Brown Peethala, Benjamin D. Briggs, Michael Rizzolo
  • Patent number: 10903116
    Abstract: Methods are provided for fabricating void-free metallic interconnect structures with self-formed diffusion barrier layers. A seed layer is deposited to line an etched opening in a dielectric layer. A metallic capping layer is selectively deposited on upper portions and upper sidewall surfaces of the seed layer which define an aperture into the etched opening. An electroplating process is performed to plate metallic material on exposed surfaces of the seed layer within the etched opening, which are not covered by the capping layer to form a metallic interconnect. The capping layer prohibits plating of metallic material on the capping layer and closing the aperture before the electroplating process is complete. A thermal anneal process is performed to cause the metallic material of the metallic capping layer to diffuse though the metallic interconnect and create a self-formed diffusion barrier layer between the metallic interconnect and the surfaces of the etched opening.
    Type: Grant
    Filed: September 9, 2019
    Date of Patent: January 26, 2021
    Assignee: International Business Machines Corporation
    Inventors: Joseph F. Maniscalco, Koichi Motoyama, James J. Kelly, Hosadurga Shobha, Chih-Chao Yang
  • Patent number: 10886168
    Abstract: Back end of line (BEOL) structures and methods generally includes forming at least two adjacent conductors separated by a space formed in a first dielectric material, wherein a liner layer is intermediate the first dielectric material and each of the at least two adjacent conductors. A second dielectric material in the space between the at least two adjacent conductors and in contact with the first dielectric material at a bottom surface thereof, wherein the first dielectric material is different from the second dielectric material, and wherein the first dielectric material has a nitrogen enriched surface at an interface between the first dielectric material and the second dielectric material. The nitrogen enriched surface can be formed by plasma nitridation, thermal nitridation, or laser annealing in the presence of nitrogen gas, ammonia, or a combination thereof.
    Type: Grant
    Filed: June 4, 2019
    Date of Patent: January 5, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Chih-Chao Yang, Terry A. Spooner, Koichi Motoyama, Shyng-Tsong Chen
  • Publication number: 20200402844
    Abstract: A method of fabricating a semiconductor device includes depositing a spacer material in a trench arranged in a dielectric layer. An end of the trench extends to a metal layer of an interconnect structure. A portion of the spacer material in contact with the metal layer is removed. A recess is formed in the metal layer at the end of the trench.
    Type: Application
    Filed: June 21, 2019
    Publication date: December 24, 2020
    Inventors: Kenneth Chun Kuen Cheng, Koichi Motoyama, Chih-Chao Yang, Hosadurga Shobha
  • Publication number: 20200388524
    Abstract: Back end of line (BEOL) structures and methods generally includes forming at least two adjacent conductors separated by a space formed in a first dielectric material, wherein a liner layer is intermediate the first dielectric material and each of the at least two adjacent conductors. A second dielectric material in the space between the at least two adjacent conductors and in contact with the first dielectric material at a bottom surface thereof, wherein the first dielectric material is different from the second dielectric material, and wherein the first dielectric material has a nitrogen enriched surface at an interface between the first dielectric material and the second dielectric material. The nitrogen enriched surface can be formed by plasma nitridation, thermal nitridation, or laser annealing in the presence of nitrogen gas, ammonia, or a combination thereof.
    Type: Application
    Filed: June 4, 2019
    Publication date: December 10, 2020
    Inventors: Chih-Chao Yang, Terry A. Spooner, Koichi Motoyama, Shyng-Tsong Chen
  • Patent number: 10840325
    Abstract: Integrated circuits including metal-insulator-metal capacitors (MIMCAPs) generally include a diffusion barrier layer on the top and bottom surfaces of the electrode and a self-formed oxide layer on sidewalls of the electrode. The diffusion barrier layers and the self-formed oxide layers on the sidewalls of the electrode prevent diffusion of the metal defining the electrode into the interlayer dielectric. Also described are processes for fabricating the MIMCAPs.
    Type: Grant
    Filed: April 11, 2018
    Date of Patent: November 17, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Joseph F. Maniscalco, Koichi Motoyama, Oscar van der Straten, Chih-Chao Yang