Patents by Inventor Koji Kato

Koji Kato has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190275606
    Abstract: Provided are a method and an apparatus for resistance spot welding in which preliminary current application is executed and then main welding is executed in accordance with master patterns of various parameters obtained during the preliminary current application. The main welding is executed under welding conditions of the master patterns, and whether a welding abnormality has occurred and whether the welding abnormality is likely to occur are determined. When the welding abnormality is likely to occur, the welding conditions for the main welding are corrected so as to prevent the welding abnormality. When the welding abnormality is unlikely to occur, the welding conditions for the main welding are corrected so as to match the master patterns.
    Type: Application
    Filed: March 6, 2019
    Publication date: September 12, 2019
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Koji NOMURA, Shuhei OGURA, Atsushi KAWAKITA, Naoya KATO, Toru HIOKI, Kenji FUKUSHIMA, Shun KATO, Takashi GOTO
  • Patent number: 10411058
    Abstract: A semiconductor apparatus includes a silicon layer including first and second semiconductor regions; an insulator film, on the silicon layer, having first and second holes positioned on the first and second semiconductor regions; a first metal portion containing a first metal element in the first hole; a first conductor portion containing a second metal element between the first metal portion and the first semiconductor region; a first silicide region containing the second metal element between the first conductor portion and the first semiconductor region; a second metal portion containing the first metal element in the second hole; a second conductor portion containing the second metal element between the second metal portion and the second semiconductor region; and a second silicide region containing a third metal element between the second conductor portion and the second semiconductor region, wherein the first conductor portion thickness is greater than the second conductor portion thickness.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: September 10, 2019
    Assignee: Canon Kabushiki Kaisha
    Inventors: Tsutomu Tange, Yukinobu Suzuki, Aiko Kato, Koji Hara, Takehito Okabe
  • Patent number: 10400662
    Abstract: A vehicular heat management device includes a first heat source, a second heat source, a first heat generator, a second heat generator, a heat generator pathway, a first heat source pathway, a second heat source pathway, and a switching portion. The first heat source and the second heat source heat a heat medium. The first heat generator generates heat according to operation. The second heat generator generates heat according to operation. The first heat generator and the second heat generator are provided in the heat generator pathway. The first heat generator is provided in the first heat generator pathway. The second heat generator is provided in the second heat generator pathway. The switching portion switches between a condition where the heat generator pathway is in flowing communication with the first heat generator pathway and a condition where the heat generator pathway is in flowing communication with the second heat generator pathway.
    Type: Grant
    Filed: September 6, 2016
    Date of Patent: September 3, 2019
    Assignees: DENSO CORPORATION, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Norihiko Enomoto, Yoshiki Kato, Masayuki Takeuchi, Koji Miura, Keigo Sato, Kengo Sugimura, Nobuharu Kakehashi, Ikuo Ozawa, Ariel Marasigan, Yoshikazu Shinpo, Yoichi Onishi, Toshio Murata
  • Publication number: 20190264340
    Abstract: An organic hydride production apparatus includes: an electrolyte membrane having proton conductivity; a cathode that includes a cathode catalyst layer used to hydrogenate a hydrogenation target substance using protons to produce an organic hydride and also includes a cathode chamber; an anode that includes an anode catalyst layer used to oxidize water to produce protons and also includes an anode chamber; and a gas introduction unit that introduces, into the anolyte at a certain position, a certain gas used to remove at least one of the hydrogenation target substance and the organic hydride that have passed through the electrolyte membrane and been mixed into the anolyte.
    Type: Application
    Filed: May 15, 2019
    Publication date: August 29, 2019
    Applicants: National University Corporation YOKOHAMA National University, DE NORA PERMELEC LTD
    Inventors: Shigenori MITSUSHIMA, Kensaku NAGASAWA, Yoshinori NISHIKI, Akihiro KATO, Setsuro OGATA, Awaludin ZAENAL, Akiyoshi MANABE, Koji MATSUOKA, Yasushi SATO
  • Publication number: 20190241703
    Abstract: The present invention provides a polycarbonate resin having a high refractive index, low Abbe number, and high moist heat resistance. The above problem, according to one embodiment, can be solved by a polycarbonate resin including structural units represented by general formula (1).
    Type: Application
    Filed: July 19, 2017
    Publication date: August 8, 2019
    Applicant: MITSUBISHI GAS CHEMICAL COMPANY, INC.
    Inventors: Noriyuki KATO, Mitsuteru KONDO, Kentaro ISHIHARA, Munenori SHIRATAKE, Koji HIROSE, Shinya IKEDA, Kensuke OSHIMA, Shuya NAGAYAMA, Shoko SUZUKI
  • Publication number: 20190234251
    Abstract: An attachment structure for a vehicle motor is applied for the purpose of attaching a vehicle motor to in-vehicle equipment. The attachment structure for a vehicle motor is provided with an axial gap motor that includes a rotor and a stator facing each other in the axial direction. The motor is attached to the in-vehicle equipment in a mode in which the axial direction is perpendicular to the vertical direction.
    Type: Application
    Filed: October 30, 2017
    Publication date: August 1, 2019
    Applicant: DENSO CORPORATION
    Inventors: Seiya YOKOYAMA, Takahiro TSUCHIYA, Shigemasa KATO, Yoji YAMADA, Koji MIKAMI, Akihisa HATTORI
  • Publication number: 20190233585
    Abstract: The present invention provides a method for producing a thermoplastic resin by reacting reactants comprising a dihydroxy compound.
    Type: Application
    Filed: April 12, 2019
    Publication date: August 1, 2019
    Applicant: MITSUBISHI GAS CHEMICAL COMPANY, INC.
    Inventors: Noriyuki KATO, Mitsuteru KONDO, Munenori SHIRATAKE, Kentaro ISHIHARA, Koji HIROSE, Shinya IKEDA
  • Publication number: 20190235258
    Abstract: The present invention provides a method for producing a thermoplastic resin by reacting reactants comprising a dihydroxy compound. In this production method, the dihydroxy compound comprises a dihydroxy compound represented by the following formula (1), and at least one of a compound represented by the following formula (A), a compound represented by the following formula (B), and a compound represented by the following formula (C), wherein the total weight of the compound represented by the formula (A), the compound represented by the formula (B), and the compound represented by the formula (C) is 1,500 ppm or more, based on the weight (100 parts by weight) of the dihydroxy compound represented by the formula (1).
    Type: Application
    Filed: April 12, 2019
    Publication date: August 1, 2019
    Applicant: MITSUBISHI GAS CHEMICAL COMPANY, INC.
    Inventors: Noriyuki KATO, Mitsuteru KONDO, Munenori SHIRATAKE, Kentaro ISHIHARA, Koji HIROSE, Shinya IKEDA
  • Patent number: 10360981
    Abstract: A semiconductor memory device includes a plurality of blocks of memory cells, including first, second, and third blocks of a first group of blocks and fourth fifth and sixth blocks of a second group of blocks, a plurality of word lines for each of the blocks, a first decode circuit for the first group, and a second decode circuit for the second group. When the first block is selected, the first decode circuit transfers a first voltage to the word lines of the first block, transfers a second voltage lower than the first voltage to the word lines of the second block, and causes the word lines of the third block to go into an electrically floating state, and the second decode circuit causes the words lines of the fourth block, the fifth block, and the sixth block into the electrically floating state.
    Type: Grant
    Filed: September 3, 2017
    Date of Patent: July 23, 2019
    Assignee: TOSHIBA MEMORY CORPORATION
    Inventors: Noriyasu Kumazaki, Koji Kato
  • Publication number: 20190221540
    Abstract: A method of manufacturing a semiconductor device of the present disclosure includes the steps of sequentially forming an adhesion-improving film, a Pt film, a Sn film, and an Au film on a semiconductor wafer through vapor deposition; dicing the semiconductor wafer to obtain a semiconductor element; sequentially forming a Ni film and an Au film on a substrate through vapor deposition; and laminating the semiconductor element and the substrate so that the Au film formed on the semiconductor element and the Au film formed on the substrate face each other, followed by joining the semiconductor element and the substrate through heating.
    Type: Application
    Filed: December 13, 2016
    Publication date: July 18, 2019
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Koji YAMAZAKI, Tomoaki KATO
  • Publication number: 20190222081
    Abstract: An electric motor includes a stator unit, insulators, windings and insulating films. In the stator unit, a plurality of stators including respective iron cores each made of a magnetic body are arranged annularly. The insulators are provided at ends of the iron cores in an axial direction of the stator unit. The windings are wound around the insulators. The insulating films insulate the iron cores and the windings from each other. The insulating films are fixed between the iron cores and the insulators.
    Type: Application
    Filed: October 6, 2016
    Publication date: July 18, 2019
    Inventors: Keisuke KATO, Yuki TAMURA, Koji MASUMOTO
  • Patent number: 10355281
    Abstract: This invention relates to a conductive paste for lithium-ion battery positive electrodes and a mixture paste for a lithium ion battery positive electrode that have an easy-to-apply viscosity, even when a relatively small amount of a dispersion resin is incorporated. More specifically, the invention provides a conductive paste for lithium-ion battery positive electrodes, the conductive paste comprising a dispersion resin (A), conductive carbon (B), and a solvent (C), the dispersion resin (A) containing a resin (A1), the resin (A1) containing, as one constituent component, a polymerizable unsaturated group-containing monomer (A1-1) represented by a specific formula.
    Type: Grant
    Filed: January 13, 2017
    Date of Patent: July 16, 2019
    Assignees: KANSAI PAINT CO., LTD., TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Junji Akahane, Koji Endo, Takanori Ito, Atsuya Kato, Hideki Hagiwara, Machiko Abe, Kosuke Iwase, You Kato, Kazuyuki Kuwano, Sachio Takeda
  • Publication number: 20190214695
    Abstract: A device temperature controller includes a heat absorber that absorbs heat from a temperature control target device to evaporate working fluid in liquid phase, and a condenser disposed above the heat absorber to condense the working fluid which has been evaporated into gas phase at the heat absorber. The device temperature controller includes a gas passage portion that guides the working fluid which has been evaporated into gas phase at the heat absorber to the condenser, and a liquid passage portion that guides the working fluid which has been condensed into liquid phase at the condenser to the heat absorber. At least a part of the gas passage portion and at least a part of the liquid passage portion are in contact with each other.
    Type: Application
    Filed: March 13, 2019
    Publication date: July 11, 2019
    Inventors: Koji MIURA, Yasumitsu OMI, Takeshi YOSHINORI, Masayuki TAKEUCHI, Takashi YAMANAKA, Yoshiki KATO
  • Patent number: 10347499
    Abstract: In a method of an embodiment, radicals, which are generated from a processing gas, is adsorbed to a layer to be etched without applying a high-frequency bias to a lower electrode, in an adsorption step. In the subsequent etching step, ions, which are generated from the processing gas, are drawn into the layer to be etched by applying a high-frequency bias to the lower electrode. The adsorption step and the etching step are alternately repeated. In the adsorption step, a density of radicals is 200 or greater times a density of ions. In the etching step, RF energy having a power density of 0.07 W/cm2 or less is supplied to the lower electrode or a high-frequency bias having a power density of 0.14 W/cm2 or less is supplied to the lower electrode for a period of 0.5 seconds or less.
    Type: Grant
    Filed: April 6, 2016
    Date of Patent: July 9, 2019
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Koji Maruyama, Akira Koshiishi, Toshio Haga, Masato Horiguchi, Makoto Kato
  • Publication number: 20190204014
    Abstract: An evaporator includes a fluid chamber in which a working fluid flows. A condenser includes a gas-phase portion in which the working fluid evaporated in the evaporator flows and a liquid-phase portion in which the working fluid from the gas-phase portion, condensed by heat exchange with an external medium, flows. A gas-phase passage causes the working fluid evaporated in the evaporator to flow to the condenser. A liquid-phase passage causes the working fluid condensed in the condenser to flow to the evaporator. A bypass passage has one end connected to the liquid-phase portion of the condenser or the liquid-phase passage and another end connected to the gas-phase portion of the condenser or the gas-phase passage. A flow rate of a liquid-phase working fluid per unit volume in the bypass passage is smaller than a flow rate of a liquid-phase working fluid per unit volume in the liquid-phase portion of the condenser or the liquid-phase passage.
    Type: Application
    Filed: August 2, 2017
    Publication date: July 4, 2019
    Inventors: Takeshi YOSHINORI, Takashi YAMANAKA, Yoshiki KATO, Masayuki TAKEUCHI, Koji MIURA, Yasumitsu OMI
  • Publication number: 20190198954
    Abstract: A device temperature regulator is provided with a device heat exchanger that functions as an evaporator at the time of cooling a temperature regulation target device and that functions as a heat radiator at the time of warming up the temperature regulation target device, and a condenser that condenses a gaseous working fluid. The device temperature regulator is provided with a heater that heats the working fluid collecting in a device fluid circuit, and a liquid amount regulator that regulates a liquid amount of the working fluid collecting in the device heat exchanger. The device heat exchanger includes a heat exchange portion that exchanges heat with the temperature regulation target device. The liquid amount regulator regulates the liquid amount of the liquid working fluid collecting in the device heat exchanger.
    Type: Application
    Filed: March 6, 2019
    Publication date: June 27, 2019
    Inventors: Koji MIURA, Yasumitsu OMI, Masayuki TAKEUCHI, Takeshi YOSHINORI, Takashi YAMANAKA, Yoshiki KATO
  • Publication number: 20190193213
    Abstract: A method for manufacturing a device temperature controller includes filling an inside of a circuit with working fluid by connecting a filling port of the circuit to a container that stores gas phase working fluid. The circuit constitutes a thermosiphon heat pipe and allows the working fluid to circulate in the circuit. In the filling, the working fluid inside the circuit is cooled by a cooling source. An inside temperature of the circuit is decreased to be lower than an inside temperature of the container, and thereby an inside pressure of the circuit is decreased to be lower than an inside pressure of the container.
    Type: Application
    Filed: March 6, 2019
    Publication date: June 27, 2019
    Inventors: Yasumitsu OMI, Takashi YAMANAKA, Yoshiki KATO, Takeshi YOSHINORI, Masayuki TAKEUCHI, Koji MIURA
  • Patent number: 10330339
    Abstract: Multiple projections are provided at a flow-change portion, which corresponds to such a portion of a wall surface of an A/C casing, at which velocity gradient of air current becomes larger in an area adjacent to the wall surface, in order to decrease aerodynamic sound generated by disturbed air current.
    Type: Grant
    Filed: May 19, 2017
    Date of Patent: June 25, 2019
    Assignee: DENSO CORPORATION
    Inventors: Masaru Kamiya, Koji Ito, Shinya Kato
  • Publication number: 20190190102
    Abstract: A device temperature regulator is provided with a gas passage part that guides a gaseous working fluid evaporated in a device heat exchanger to a condenser, and a liquid passage part that guides a liquid working fluid condensed in the condenser to the device heat exchanger. The device temperature regulator is provided with a supply amount regulator that increases or decreases a supply amount of the liquid working fluid supplied to the device heat exchanger. The supply amount regulator decreases the supply amount of the liquid working fluid to the device heat exchanger such that a liquid surface is formed in a state where the gaseous working fluid is positioned at a lower side lower than a heat exchanging portion exchanging heat with a temperature regulation target device in the device heat exchanger, when a condition for keeping the temperature regulation target device at a temperature is satisfied.
    Type: Application
    Filed: February 26, 2019
    Publication date: June 20, 2019
    Inventors: Koji MIURA, Takashi YAMANAKA, Yasumitsu OMI, Yoshiki KATO, Masayuki TAKEUCHI, Takeshi YOSHINORI
  • Patent number: D856412
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: August 13, 2019
    Assignee: SEIKO EPSON CORPORATION
    Inventors: Tomoyuki Higuchi, Koji Kawai, Hideki Kato, Matt Delegate, Kazunori Takabayashi