Patents by Inventor Kouichi Nagai

Kouichi Nagai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7768082
    Abstract: According to the present embodiment, a surface-shape sensor is provided. The surface-shape sensor includes a silicon substrate, an interlayer insulating film formed over the silicon substrate, a first moisture-barrier insulating film formed on the interlayer insulating film, a detection-electrode film formed on the first moisture-barrier insulating film, a second moisture-barrier insulating film formed on the detection-electrode film and a protection insulating film formed on the second moisture-barrier insulating film and provided with a window on the detection electrode film.
    Type: Grant
    Filed: August 14, 2007
    Date of Patent: August 3, 2010
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Kouichi Nagai
  • Patent number: 7750485
    Abstract: According to the method for manufacturing a semiconductor device, a surface of a lower insulating film (55) is planarized by CMP or the like, and an upper insulating film (56) and a protective metal film (59) are formed on the lower insulating film (55). Accordingly, the upper insulating film (56) and the protective metal film (59) are formed in such a manner they have an excellent coverage and the water/hydrogen blocking capability of the upper insulating film (56) and the protective metal film (59) is maximized.
    Type: Grant
    Filed: January 7, 2008
    Date of Patent: July 6, 2010
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Makoto Takahashi, Kouichi Nagai
  • Publication number: 20100144064
    Abstract: An ultra-thin semiconductor chip of an FeRAM, which is miniaturized and highly integrated with characteristic degradation of a ferroelectric capacitor suppressed though a thin package structure is applied to the FeRAM is realized. The semiconductor chip is molded up by using a sealing resin with a filler content set at a value in a range of 90 weight % to 93 weight % to produce a package structure.
    Type: Application
    Filed: February 4, 2010
    Publication date: June 10, 2010
    Applicant: FUJITSU MICROELECTRONICS LIMITED
    Inventors: Kaoru Saigoh, Kouichi Nagai
  • Publication number: 20100087014
    Abstract: Provided is a heat treatment apparatus including a treatment chamber housing a silicon substrate, a heater being provided in the treatment chamber and heating the silicon substrate, and an atmosphere adjustment mechanism reducing a concentration of oxygen contained in an atmosphere inside the treatment chamber to less than an oxygen concentration in the air. The atmosphere adjustment mechanism is provided with an oxygen trap, for example.
    Type: Application
    Filed: December 8, 2009
    Publication date: April 8, 2010
    Applicant: FUJITSU MICROELECTRONICS LIMITED
    Inventor: Kouichi Nagai
  • Patent number: 7683412
    Abstract: An ultra-thin semiconductor chip of an FeRAM, which is miniaturized and highly integrated with characteristic degradation of a ferroelectric capacitor suppressed though a thin package structure is applied to the FeRAM is realized. The semiconductor chip is molded up by using a sealing resin with a filler content set at a value in a range of 90 weight % to 93 weight % to produce a package structure.
    Type: Grant
    Filed: February 28, 2006
    Date of Patent: March 23, 2010
    Assignee: Fujitsu Microelectronics Limited
    Inventors: Kaoru Saigoh, Kouichi Nagai
  • Publication number: 20100047931
    Abstract: When adopting a stack-type capacitor structure for a ferroelectric capacitor structure (30), an interlayer insulating film (27) is formed between a lower electrode (39) (or a barrier conductive film) and a conductive plug (22) to eliminate an impact of orientation/level difference on a surface of the conductive plug (22) onto the ferroelectric film (40). Differently from a conductive film like the lower electrode (39) or the barrier conductive film, the interlayer insulating film (27) can be formed without inheriting the orientation/level difference from its lower layers by planarizing the surface thereof.
    Type: Application
    Filed: October 29, 2009
    Publication date: February 25, 2010
    Applicant: FUJITSU MICROELECTRONICS LIMITED
    Inventor: Kouichi Nagai
  • Publication number: 20100019348
    Abstract: After the formation of a first interlayer insulating, an etching stopper film made of SiON is formed thereon. Subsequently, a contact hole extending from the upper surface of the etching stopper film and reaching a high concentration impurity region is formed, and a first plug is formed by filling W into the contact hole. Next, a ferroelectric capacitor, a second interlayer insulating film, and the like are formed. Thereafter, a contact hole extending from the upper surface of the interlayer insulating film and reaching the first plug is formed. Then, the contact hole is filled with W to form a second plug. With this, even when misalignment occurs, the interlayer insulating film is prevented from being etched.
    Type: Application
    Filed: August 21, 2009
    Publication date: January 28, 2010
    Applicant: FUJITSU MICROELECTRONICS LIMITED
    Inventor: Kouichi Nagai
  • Patent number: 7652377
    Abstract: A seal ring (102) is formed in a manner to surround each ferroelectric capacitor (101). Additionally, a seal ring (103) is formed in a manner to surround a plurality of ferroelectric capacitors (101). Further, a seal ring (104) is formed in a manner to surround all of the ferroelectric capacitors (101) and along a dicing line (110) inside the dicing line (110).
    Type: Grant
    Filed: September 18, 2006
    Date of Patent: January 26, 2010
    Assignee: Fujitsu Microelectronics Limited
    Inventors: Tetsuo Yaegashi, Kouichi Nagai
  • Publication number: 20100009544
    Abstract: A coating solution of SOG is applied on a silicon oxynitride film (11) and precured. As a result, moisture contained in the coating solution volatilizes, and an SOG film (12) is formed. Next, a coating solution of SOG is applied on the SOG film (12) and precured. As a result, an SOG film (13) is formed. Thereafter, a coating solution of SOG is applied on the SOG film (13) and precured. As a result, an SOG film (14) is formed. Subsequently, a main cure of the SOG films (12, 13, and 14) is performed. The viscosity of the coating solution of SOG used for forming the SOG film (12) is lower than those of the coating solutions of SOG used for forming the SOG films (13 and 14).
    Type: Application
    Filed: September 23, 2009
    Publication date: January 14, 2010
    Applicant: FUJITSU MICROELECTRONICS LIMITED
    Inventors: Tsukasa Sato, Kouichi Nagai
  • Publication number: 20100009466
    Abstract: An interlayer insulating film (14) covering a ferroelectric capacitor is formed and a contact hole (19) reaching a top electrode (11a) is formed in the interlayer insulating film (14). An Al wiring (17) connected to the top electrode (11a) via the contact hole (19) is formed on the interlayer insulating film (14). A planar shape of the contact hole (19) is an ellipse.
    Type: Application
    Filed: September 21, 2009
    Publication date: January 14, 2010
    Applicant: FUJITSU MICROELECTRONICS LIMITED
    Inventor: Kouichi Nagai
  • Publication number: 20100001372
    Abstract: Stable contact hole forming is attained even when an aluminum oxide film is present between layers provided with contact holes. The process comprises the steps of forming a first element layer on a semiconductor substrate; forming a first interlayer insulating film on the first element layer; forming a second element layer on the first interlayer insulating film; forming a second interlayer insulating film on the second element layer; forming a hole resist pattern on the second interlayer insulating film; conducting a first etching for forming of holes by etching the second interlayer insulating film; and conducting a second etching for extending of holes to the first element layer by etching the first interlayer insulating film.
    Type: Application
    Filed: July 9, 2009
    Publication date: January 7, 2010
    Applicant: FUJITSU MICROELECTRONICS LIMITED
    Inventors: Yukimasa Miyazaki, Kouichi Nagai, Hideaki Kikuchi
  • Publication number: 20090315028
    Abstract: A semiconductor substrate includes a wafer, a first stepped structure formed of plural stepped parts formed on a surface of the wafer with a first area occupation ratio, a second stepped structure formed of plural stepped parts formed on the surface of the wafer with a second, different area occupation ratio, and an interlayer insulation film formed on the surface so as to cover the first and second stepped structures, the interlayer insulation film having a planarized top surface, wherein there are provided at least first and second film-thickness monitoring patterns for monitoring film thickness on the surface in a manner covered by the interlayer insulation film, a first pattern group is formed on the surface such that the first pattern group comprises plural patterns disposed so as to surround the first film-thickness monitoring pattern, a second pattern group is formed on the surface such that the second pattern group comprises plural patterns disposed so as to surround the second film-thickness monitori
    Type: Application
    Filed: August 25, 2009
    Publication date: December 24, 2009
    Applicant: Fujitsu Microelectronics Limited,
    Inventors: Tetsuo Yaegashi, Kouichi Nagai
  • Patent number: 7635885
    Abstract: An interlayer insulating film (14) covering a ferroelectric capacitor is formed and a contact hole (19) reaching a top electrode (11a) is formed in the interlayer insulating film (14). An Al wiring (17) connected to the top electrode (11a) via the contact hole (19) is formed on the interlayer insulating film (14). A planar shape of the contact hole (19) is an ellipse.
    Type: Grant
    Filed: November 20, 2006
    Date of Patent: December 22, 2009
    Assignee: Fujitsu Microelectronics Limited
    Inventor: Kouichi Nagai
  • Publication number: 20090309180
    Abstract: A surface profile sensor includes an interlayer insulating film provided with a planarized upper surface formed above a semiconductor substrate, a detection electrode film formed on the interlayer insulating film, an upper insulating film formed on the detection electrode film and the interlayer insulating film and including the surface on which a silicon nitride film is exposed, and a protection insulating film deposited on the upper insulating film and made of a tetrahedral amorphous carbon (ta-C) film including a window formed on the detection electrode film.
    Type: Application
    Filed: August 26, 2009
    Publication date: December 17, 2009
    Applicant: FUJITSU MICROELECTRONICS LIMITED
    Inventors: Takahiro Yamagata, Kouichi Nagai
  • Publication number: 20090302362
    Abstract: A lower electrode film, a ferroelectric film, and an upper electrode film are formed on an insulation film covering a transistor formed on a semiconductor substrate. Furthermore, a Pt film is formed as a cap layer on the upper electrode film. Then, a hard mask (a TiN film and an SiO2 film) of a predetermined pattern is formed on the Pt film, and the Pt film and the upper electrode film are etched. Then, an insulating protective film is formed on an entire surface, and a side surface of the upper electrode film is covered with the insulating protective film. Next, the ferroelectric film and the lower electrode film are etched, thus forming a ferroelectric capacitor.
    Type: Application
    Filed: August 14, 2009
    Publication date: December 10, 2009
    Applicant: FUJITSU MICROELECTRONICS LIMITED
    Inventors: Hideaki Kikuchi, Kouichi Nagai
  • Publication number: 20090302363
    Abstract: Provided is a semiconductor device that includes: a base insulating film 25 formed above a silicon substrate 10; a ferroelectric capacitor Q formed on the base insulating film 25; multiple interlayer insulating films 35, 48, and 62, and metal interconnections 45, 58, and 72 which are alternately formed on and above the capacitor Q; and conductive plugs 57 which are respectively formed inside holes 54a provided in the interlayer insulating films 48 and are electrically connected to the metal interconnections 45. In the semiconductor device, a first capacitor protection insulating film 50 is formed on an upper surface of the interlayer insulating film 48 by sequentially stacking a first insulating metal oxide film 50a, an intermediate insulating film 50b having a relative dielectric constant lower than that of the interlayer insulating film 48, and a second insulating metal oxide film 50c; and the holes 54a are also formed in the first capacitor protection insulating film 50.
    Type: Application
    Filed: August 17, 2009
    Publication date: December 10, 2009
    Applicant: FUJITSU MICROELECTRONICS LIMITED
    Inventor: Kouichi Nagai
  • Patent number: 7629636
    Abstract: When adopting a stack-type capacitor structure for a ferroelectric capacitor structure (30), an interlayer insulating film (27) is formed between a lower electrode (39) (or a barrier conductive film) and a conductive plug (22) to eliminate an impact of orientation/level difference on a surface of the conductive plug (22) onto the ferroelectric film (40). Differently from a conductive film like the lower electrode (39) or the barrier conductive film, the interlayer insulating film (27) can be formed without inheriting the orientation/level difference from its lower layers by planarizing the surface thereof.
    Type: Grant
    Filed: December 7, 2007
    Date of Patent: December 8, 2009
    Assignee: Fujitsu Microelectronics Limited
    Inventor: Kouichi Nagai
  • Publication number: 20090298201
    Abstract: In a manufacturing method of a semiconductor device, a first insulating film covering a ferroelectric capacitor is formed, and a first opening that has a relatively large diameter and reaches an electrode of the ferroelectric capacitor is formed in the first insulating film, and then recovery annealing of the ferroelectric capacitor is performed, and thereby, a path for oxygen can be secured in performing the recovery annealing, and the sufficient recovery annealing can be performed without causing problems during a manufacturing process.
    Type: Application
    Filed: August 10, 2009
    Publication date: December 3, 2009
    Applicant: FUJITSU MICROELECTRONICS LIMITED
    Inventor: Kouichi Nagai
  • Publication number: 20090298203
    Abstract: An aluminum oxide film covering a ferroelectric capacitor is formed. Next, an opening (51t) where a portion of a top electrode is exposed and an opening (51b) where a portion of a bottom electrode is exposed are formed in the aluminum oxide film. Thereafter, films (23 to 26) are formed and a resist pattern (92) is formed. Then, etching of the films (23 to 26) is performed with using the resist pattern (92) as a mask thereby forming contact holes (27t) and (27b). At this time, since the openings (51t) and (51b) are formed in the aluminum oxide film, the aluminum oxide film is not required to be processed. Consequently, the contact holes (27t) and (27b) can be formed easily.
    Type: Application
    Filed: August 11, 2009
    Publication date: December 3, 2009
    Applicant: FUJITSU MICROELECTRONICS LIMITED
    Inventor: Kouichi Nagai
  • Publication number: 20090278231
    Abstract: The semiconductor device comprises a first insulation film 26 formed over a semiconductor substrate 10, first conductor plug 32 buried in a first contact hole 28a formed down to a source/drain diffused layer 22, a capacitor 44 formed over the first insulation film 26, a first hydrogen diffusion preventing film 48 formed over the first insulation film 26, covering the capacitor 44, a second insulation film 50 formed over the first hydrogen diffusion preventing film and having the surface planarized, a second hydrogen diffusion preventing film 52 formed over the first hydrogen diffusion preventing film 26 and having the surface planarized, a second hydrogen diffusion preventing film 52 formed over the second insulation film 50, second conductor plug 62 buried in a second contact hole 56 formed down to the lower electrode 38 or the upper electrode 42 of the capacitor 44, a third conductor plug 62 buried in a third contact hole 58 formed down to the first conductor plug 32, and an interconnection 64 connected to
    Type: Application
    Filed: July 14, 2009
    Publication date: November 12, 2009
    Applicant: Fujitsu Microelectronics Limited
    Inventors: Kouichi Nagai, Hideaki Kikuchi, Naoya Sashida, Yasutaka Ozaki